

Document: AAR-VID11318 © 2021 Gossamer Security Solutions, Inc.
 All rights reserved.

www.GossamerSec.com

Assurance Activity Report for

Infinera Corporation Transcend
Management System Client 18.10.3

Version 0.3

12/06/22

Prepared by:
Gossamer Security Solutions

Accredited Security Testing Laboratory – Common Criteria Testing
Columbia, MD 21045

Prepared for:
National Information Assurance Partnership

Common Criteria Evaluation and Validation Scheme

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 2 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

REVISION HISTORY

Revision Date Authors Summary

Version 0.1 11/11/22 Smoley Initial draft

Version 0.2 12/02/22 Smoley Addressed First Round ECR comments

Version 0.3 12/06/22 Smoley Updated for Second Round ECR comments

The TOE Evaluation was Sponsored by:
Infinera Corporation
9005 Junction Drive, Suite C
Annapolis Junction, MD 20701

 Evaluation Personnel:

• Raymond Smoley

Common Criteria Versions:

• Common Criteria for Information Technology Security Evaluation Part 1: Introduction, Version 3.1,
Revision 5, April 2017

• Common Criteria for Information Technology Security Evaluation Part 2: Security functional components,
Version 3.1, Revision 5, April 2017

• Common Criteria for Information Technology Security Evaluation Part 3: Security assurance components,
Version 3.1, Revision 5, April 2017

Common Evaluation Methodology Versions:

• Common Methodology for Information Technology Security Evaluation, Evaluation Methodology, Version
3.1, Revision 5, April 2017

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 3 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

TABLE OF CONTENTS

1. Introduction ... 5

1.1 Test Equivalence .. 5

1.2 CAVP Certificates .. 5

2. Protection Profile SFR Assurance Activities ... 6

2.1 Cryptographic support (FCS) .. 6

2.1.1 Cryptographic Key Generation Services (ASPP14:FCS_CKM.1) ... 6

2.1.2 Cryptographic Asymmetric Key Generation - per TD0659 (ASPP14:FCS_CKM.1/AK) 6

2.1.3 Cryptographic Symmetric Key Generation (ASPP14:FCS_CKM.1/SK) ... 10

2.1.4 Cryptographic Key Establishment (ASPP14:FCS_CKM.2) .. 10

2.1.5 Cryptographic Operation - Hashing (ASPP14:FCS_COP.1/Hash) ... 14

2.1.6 Cryptographic Operation - Keyed-Hash Message Authentication - per TD0626

(ASPP14:FCS_COP.1/KeyedHash) .. 15

2.1.7 Cryptographic Operation - Signing (ASPP14:FCS_COP.1/Sig) ... 16

2.1.8 Cryptographic Operation - Encryption/Decryption (ASPP14:FCS_COP.1/SKC) 17

2.1.9 Random Bit Generation Services (ASPP14:FCS_RBG_EXT.1) .. 23

2.1.10 Random Bit Generation from Application (ASPP14:FCS_RBG_EXT.2) .. 25

2.1.11 Storage of Credentials (ASPP14:FCS_STO_EXT.1)... 27

2.1.12 TLS Protocol (PKGTLS11:FCS_TLS_EXT.1) ... 28

2.1.13 TLS Client Protocol (PKGTLS11:FCS_TLSC_EXT.1) ... 29

2.1.14 TLS Client Support for Supported Groups Extension (PKGTLS11:FCS_TLSC_EXT.5) 36

2.2 User data protection (FDP) .. 36

2.2.1 Encryption Of Sensitive Application Data (ASPP14:FDP_DAR_EXT.1) .. 36

2.2.2 Access to Platform Resources (ASPP14:FDP_DEC_EXT.1) ... 38

2.2.3 Network Communications (ASPP14:FDP_NET_EXT.1) .. 40

2.3 Identification and authentication (FIA) .. 41

2.3.1 X.509 Certificate Validation (ASPP14:FIA_X509_EXT.1).. 41

2.3.2 X.509 Certificate Authentication (ASPP14:FIA_X509_EXT.2) .. 46

2.4 Security management (FMT) .. 47

2.4.1 Secure by Default Configuration (ASPP14:FMT_CFG_EXT.1) .. 47

2.4.2 Supported Configuration Mechanism - per TD0624 (ASPP14:FMT_MEC_EXT.1) 49

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 4 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

2.4.3 Specification of Management Functions (ASPP14:FMT_SMF.1)... 51

2.5 Privacy (FPR) ... 52

2.5.1 User Consent for Transmission of Personally Identifiable (ASPP14:FPR_ANO_EXT.1) 52

2.6 Protection of the TSF (FPT) .. 53

2.6.1 Anti-Exploitation Capabilities (ASPP14:FPT_AEX_EXT.1) .. 53

2.6.2 Use of Supported Services and APIs (ASPP14:FPT_API_EXT.1) ... 58

2.6.3 Software Identification and Versions (ASPP14:FPT_IDV_EXT.1) ... 59

2.6.4 Use of Third Party Libraries (ASPP14:FPT_LIB_EXT.1)... 59

2.6.5 Integrity for Installation and Update (ASPP14:FPT_TUD_EXT.1) .. 60

2.6.6 Integrity for Installation and Update - per TD0664 (ASPP14:FPT_TUD_EXT.2) 62

2.7 Trusted path/channels (FTP) .. 64

2.7.1 Protection of Data in Transit - per TD0655 (ASPP14:FTP_DIT_EXT.1) .. 64

3. Protection Profile SAR Assurance Activities .. 67

3.1 Development (ADV) ... 67

3.1.1 Basic Functional Specification (ADV_FSP.1) .. 67

3.2 Guidance documents (AGD) ... 67

3.2.1 Operational User Guidance (AGD_OPE.1) .. 67

3.2.2 Preparative Procedures (AGD_PRE.1) ... 68

3.3 Life-cycle support (ALC) .. 68

3.3.1 Labelling of the TOE (ALC_CMC.1) .. 68

3.3.2 TOE CM Coverage (ALC_CMS.1) .. 69

3.3.3 Timely Security Updates (ALC_TSU_EXT.1) ... 69

3.4 Tests (ATE) .. 70

3.4.1 Independent Testing - Conformance (ATE_IND.1) .. 70

3.5 Vulnerability assessment (AVA) ... 71

3.5.1 Vulnerability Survey (AVA_VAN.1) .. 71

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 5 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

1. INTRODUCTION

This document presents evaluations results of the Infinera Corporation Transcend Network Management System

(TNMS) Client 18.10.3 ASPP14/ PKGTLS11 evaluation. This document contains a description of the assurance

activities and associated results as performed by the evaluators.

1.1 TEST EQUIVALENCE

The evaluator fully tested on the TNMS Client on a Windows 10 Home platform. The TOE also claims compatibility

for any Windows 10 deployment and multiple processors. Since the TOE is a Java application which abstracts the

function calls made by the TOE and the same TOE image is provided across different deployments, the evaluation

team concludes that the evidence provided should be sufficient to match all of the deployments claimed in the ST.

Additionally, the evaluator made use of an external TNMS Server to produce test evidence. The TNMS Server is

not a part of this evaluation as it is separately evaluated, and it is only used to demonstrate the correct operations

of the TOE. All security requirements are met by the TOE completely. Functional behavior from the TNMS server

(including server credentials and network element management) are not claimed under this evaluation.

1.2 CAVP CERTIFICATES

The TOE performs cryptographic algorithms in accordance with the following NIST standards and has received the

following CAVP algorithm certificates.

SFR Algorithm NIST Standard Cert#

FCS_CKM.1/AK (Key Gen)

ECDH Key Generation P-
256, 384, 521

FIPS 186-4, ECDSA
A2313

RSA IFC key generation
2048 bits

FIPS 186-4, RSA
A2313

FCS_CKM.2 (Key Establishment) ECDH Key Exchange SP 800-56A, KAS ECC A2313

RSA Key Exchange N/A

FCS_COP.1/SKC AES 128/256 CBC, GCM FIPS 197, SP 800-38A/D A2313

FCS_COP.1/Hash
SHA Hashing
SHA-1, 256, 384, 512

FIPS 180-4
A2313

FCS_COP.1/Sig

RSA Sign/Verify 2048 bits FIPS 186-4, RSA A2313

ECDSA Sign/Verify P-256,
384, 521

FIPS 186-4, ECDSA
A2313

FCS_COP.1/KeyedHash
HMAC-SHA
HMAC-SHA 1, 256, 384,
512

FIPS 198-1 & 180-4
A2313

FCS_RBG_EXT.2 (Random)
DRBG Bit Generation
Hash DRBG 256 bits

SP 800-90A
A2313

Table 1-1 Bouncy Castle CAVP Certificates

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 6 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

2. PROTECTION PROFILE SFR ASSURANCE ACTIVITIES

This section of the AAR identifies each of the assurance activities included in the claimed Protection Profile and

describes the findings in each case.

The following evidence was used to complete the Assurance Activities:

AAR v0.2

• Infinera Corporation Transcend Network Management System Client 18.10.3 Security Target, Version 1.5

12/06/2022 [ST]

• Infinera Transcend Network Management System Client 18.10.3 Administrative Guidance for Common

Criteria, Version 1.2, December 6st 2022 [Admin Guide]

2.1 CRYPTOGRAPHIC SUPPORT (FCS)

2.1.1 CRYPTOGRAPHIC KEY GENERATION SERVICES (ASPP14:FCS_CKM.1)

2.1.1.1 ASPP14:FCS_CKM.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall inspect the application and its developer documentation

to determine if the application needs asymmetric key generation services. If not, the evaluator shall verify the

generate no asymmetric cryptographic keys selection is present in the ST. Otherwise, the evaluation activities shall

be performed as stated in the selection-based requirements.

Section 6.1 of the ST states that the TOE generates asymmetric RSA and ECDH keys during TLS connections to the

TNMS server. The evaluator examined the AGD document and found references to algorithms used by TLS and

SSH, however no other references to key generation outside of those claimed in the ST.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.1.2 CRYPTOGRAPHIC ASYMMETRIC KEY GENERATION - PER TD0659

(ASPP14:FCS_CKM.1/AK)

2.1.2.1 ASPP14:FCS_CKM.1/AK.1

TSS Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 7 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall ensure that the TSS identifies the key sizes supported by

the TOE. If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies

the usage for each scheme.

If the application 'invokes platform-provided functionality for asymmetric key generation', then the evaluator shall

examine the TSS to verify that it describes how the key generation functionality is invoked.

Section 6.1 of the ST states that the TOE generates 2048-bit RSA keys P-256 and P-384 EDCHE keys as part of TLS

secured connections to the TNMS server. The TOE does not claim to invoke any platform-provided functionality for

asymmetric key generation.

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the

administrator how to configure the TOE to use the selected key generation scheme(s) and key size(s) for all uses

defined in this PP.

The TOE generates asymmetric keys as part of TLS secured connections to the TNMS server. Section 3.5.4 TLS

Configuration notes that “Other than setting the trusted root certificates, TLS settings in TNMS Client – such as

supported cipher suites and key sizes - are fixed and not configurable by the user.”

Additionally, Section 3.4 Enabling FIPS mode indicates that the TOE installation requires setting up the

cryptographic library into FIPS mode in order to be in compliance with the Common Criteria evaluated

configuration. Additionally, this section also states that the use of any other cryptographic engines, or

configurations other than what is described in this section was not evaluated nor tested during the Common

Criteria Evaluation of TNMS Client.

Component Testing Assurance Activities: If the application 'implements asymmetric key generation,' then the

following test activities shall be carried out. Evaluation Activity Note: The following tests may require the

developer to provide access to a developer environment that provides the evaluator with tools that are typically

available to end-users of the application. Key Generation for FIPS PUB 186-4 RSA Schemes The evaluator shall

verify the implementation of RSA Key Generation by the TOE using the Key Generation test. This test verifies the

ability of the TSF to correctly produce values for the key components including the public verification exponent e,

the private prime factors p and q, the public modulus n and the calculation of the private signature exponent d.

Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include:

1. Random Primes:

Provable primes

Probable primes

2. Primes with Conditions:

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 8 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Primes p1, p2, q1,q2, p and q shall all be provable primes

Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes

Primes p1, p2, q1, q2, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with Conditions

methods, the evaluator must seed the TSF key generation routine with sufficient data to deterministically generate

the RSA key pair. This includes the random seed(s), the public exponent of the RSA key, and the desired key length.

For each key length supported, the evaluator shall have the TSF generate 25 key pairs. The evaluator shall verify

the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from

a known good implementation. If possible, the Random Probable primes method should also be verified against a

known good implementation as described above. Otherwise, the evaluator shall have the TSF generate 10 keys

pairs for each supported key length nlen and verify:

n = p*q,

p and q are probably prime according to Miller-Rabin tests,

GCD(p-1,e) = 1,

GCD(q-1,e) = 1,

2^16 <= e <= 2^256 and e is an odd integer,

|p-q| > 2^(nlen/2 - 100),

p >= 2^(nlen/2 -1/2),

q >= 2^(nlen/2 -1/2),

2^(nlen/2) < d < LCM(p-1,q-1),

e*d = 1 mod LCM(p-1,q-1).

Key Generation for Elliptic Curve Cryptography (ECC)

FIPS 186-4 ECC Key Generation Test For each supported NIST curve, i.e., P-256, P384 and P-521, the evaluator shall

require the implementation under test (IUT) to generate 10 private/public key pairs. The private key shall be

generated using an approved random bit generator (RBG). To determine correctness, the evaluator shall submit

the generated key pairs to the public key verification (PKV) function of a known good implementation. FIPS 186-4

Public Key Verification (PKV) Test For each supported NIST curve, i.e., P256, P-384 and P-521, the evaluator shall

generate 10 private/public key pairs using the key generation function of a known good implementation and

modify five of the public key values so that they are incorrect, leaving five values unchanged (i.e., correct). The

evaluator shall obtain in response a set of 10 PASS/FAIL values. Key Generation for Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for FFC by the

TOE using the Parameter Generation and Key Generation test. This test verifies the ability of the TSF to correctly

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 9 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

produce values for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group generator g,

and the calculation of the private key x and public key y. The Parameter generation specifies 2 ways (or methods)

to generate the cryptographic prime q and the field prime p:

Cryptographic and Field Primes:

Primes q and p shall both be provable primes

Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

Cryptographic Group Generator:

Generator g constructed through a verifiable process

Generator g constructed through an unverifiable process.

The Key generation specifies 2 ways to generate the private key x: Private Key:

len(q) bit output of RBG where 1 =x = q-1

len(q) + 64 bit output of RBG, followed by a mod q-1 operation where 1= x=q-1.

The security strength of the RBG must be at least that of the security offered by the FFC parameter set. To test the

cryptographic and field prime generation method for the provable primes method and/or the group generator g

for a verifiable process, the evaluator must seed the TSF parameter generation routine with sufficient data to

deterministically generate the parameter set. For each key length supported, the evaluator shall have the TSF

generate 25 parameter sets and key pairs. The evaluator shall verify the correctness of the TSF's implementation

by comparing values generated by the TSF with those generated from a known good implementation. Verification

must also confirm

g not= 0,1

q divides p-1

g^q mod p = 1

g^x mod p = y

for each FFC parameter set and key pair.

Diffie-Hellman Group 14 and FFC Schemes using 'safe-prime' groups

Testing for FFC Schemes using Diffie-Hellman group 14 and/or safe-prime groups is done as part of testing in

CKM.2.1.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 10 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The TOE TNMS Client includes the CAVP-certified BC-FJA (Bouncy Castle FIPS Java API). See Section 1.2 for a listing

of CAVP certificates.

2.1.3 CRYPTOGRAPHIC SYMMETRIC KEY GENERATION (ASPP14:FCS_CKM.1/SK)

2.1.3.1 ASPP14:FCS_CKM.1/SK.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall review the TSS to determine that it describes how the

functionality described by FCS_RBG_EXT.1 is invoked.

If the application is relying on random bit generation from the host platform, the evaluator shall verify the TSS

includes the name/manufacturer of the external RBG and describes the function call and parameters used when

calling the external DRBG function. If different external RBGs are used for different platforms, the evaluator shall

verify the TSS identifies each RBG for each platform. Also, the evaluator shall verify the TSS includes a short

description of the vendor's assumption for the amount of entropy seeding the external DRBG. The evaluator uses

the description of the RBG functionality in FCS_RBG_EXT or documentation available for the operational

environment to determine that the key size being requested is identical to the key size and mode to be used for

the encryption/decryption of the user data.

Section 6.1 of the ST states that the TOE generates 128 and 256-bit AES keys during the TLS handshake and uses its

Bouncy Castle cryptographic library to generate the random values used during the handshake.

In regards to how the functionality for random bit generation is invoked, the same section states the TOE’s Bouncy

Castle library calls the java.security.SecureRandom class [specifically calling SecureRandom.generateSeed()] to

obtain a 256-bit seed, which is assumed to contain 256-bits of entropy.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.1.4 CRYPTOGRAPHIC KEY ESTABLISHMENT (ASPP14:FCS_CKM.2)

2.1.4.1 ASPP14:FCS_CKM.2.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 11 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Component TSS Assurance Activities: The evaluator shall ensure that the supported key establishment schemes

correspond to the key generation schemes identified in FCS_CKM.1.1. If the ST specifies more than one scheme,

the evaluator shall examine the TSS to verify that it identifies the usage for each scheme.

Section 6.1 of the ST states the TOE uses RSA-based key establishment and ECDHE as part of its TLS connection to

the TNMS server. Those claims match the key generation schemes identified under FCS_CKM.1.1.

Component Guidance Assurance Activities: The evaluator shall verify that the AGD guidance instructs the

administrator how to configure the TOE to use the selected key establishment scheme(s).

The TOE uses RSA-based key establishment and ECDHE as part of its TLS connection to the TNMS server. Section

3.5.4 TLS Configuration notes that “Other than setting the trusted root certificates, TLS settings in TNMS Client –

such as supported cipher suites and key sizes - are fixed and not configurable by the user.”

Additionally, Section 3.4 Enabling FIPS mode indicates that the TOE installation requires setting up the

cryptographic library into FIPS mode in order to be in compliance with the Common Criteria evaluated

configuration. Additionally, this section also states that the use of any other cryptographic engines, or

configurations other than what is described in this section was not evaluated nor tested during the Common

Criteria Evaluation of TNMS Client.

Component Testing Assurance Activities: Evaluation Activity Note: The following tests require the developer to

provide access to a test platform that provides the evaluator with tools that are typically not found on factory

products.

Key Establishment Schemes

The evaluator shall verify the implementation of the key establishment schemes supported by the TOE using the

applicable tests below.

SP800-56A Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A key agreement schemes using the following

Function and Validity tests. These validation tests for each key agreement scheme verify that a TOE has

implemented the components of the key agreement scheme according to the specifications in the

Recommendation. These components include the calculation of the DLC primitives (the shared secret value Z) and

the calculation of the derived keying material (DKM) via the Key Derivation Function (KDF). If key confirmation is

supported, the evaluator shall also verify that the components of key confirmation have been implemented

correctly, using the test procedures described below. This includes the parsing of the DKM, the generation of

MACdata and the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To conduct

this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE

supported schemes. For each supported key agreement scheme-key agreement role combination, KDF type, and, if

supported, key confirmation role- key confirmation type combination, the tester shall generate 10 sets of test

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 12 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

vectors. The data set consists of one set of domain parameter values (FFC) or the NIST approved curve (ECC) per 10

sets of public keys. These keys are static, ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the DKM, the corresponding TOE's public keys (static and/or ephemeral), the MAC

tag(s), and any inputs used in the KDF, such as the Other Information (OtherInfo) and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only the public keys and the hashed

value of the shared secret.

The evaluator shall verify the correctness of the TSF's implementation of a given scheme by using a known good

implementation to calculate the shared secret value, derive the keying material DKM, and compare hashes or MAC

tags generated from these values.

If key confirmation is supported, the TSF shall perform the above for each implemented approved MAC algorithm.

Validity Test

The Validity test verifies the ability of the TOE to recognize another party's valid and invalid key agreement results

with or without key confirmation. To conduct this test, the evaluator shall obtain a list of the supporting

cryptographic functions included in the SP800-56A key agreement implementation to determine which errors the

TOE should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC) test vectors consisting of

data sets including domain parameter values or NIST approved curves, the evaluator's public keys, the TOE's

public/private key pairs, MACTag, and any inputs used in the KDF, such as the OtherInfo and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key agreement

results caused by the following fields being incorrect: the shared secret value Z, the DKM, the OtherInfo field, the

data to be MACed, or the generated MACTag. If the TOE contains the full or partial (only ECC) public key validation,

the evaluator will also individually inject errors in both parties' static public keys, both parties' ephemeral public

keys and the TOE's static private key to assure the TOE detects errors in the public key validation function and/or

the partial key validation function (in ECC only). At least two of the test vectors shall remain unmodified and

therefore should result in valid key agreement results (they should pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the corresponding

parameters. The evaluator shall compare the TOE's results with the results using a known good implementation

verifying that the TOE detects these errors.

SP800-56B Key Establishment Schemes

The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a recipient, or both for RSA-

based key establishment schemes.

If the TOE acts as a sender, the following evaluation activity shall be performed to ensure the proper operation of

every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the

TOE supported schemes. For each combination of supported key establishment scheme and its options (with or

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 13 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is

supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate

10 sets of test vectors. Each test vector shall include the RSA public key, the plaintext keying material, any

additional input parameters if applicable, the MacKey and MacTag if key confirmation is incorporated, and the

outputted ciphertext. For each test vector, the evaluator shall perform a key establishment encryption operation

on the TOE with the same inputs (in cases where key confirmation is incorporated, the test shall use the MacKey

from the test vector instead of the randomly generated MacKey used in normal operation) and ensure that the

outputted ciphertext is equivalent to the ciphertext in the test vector.

If the TOE acts as a receiver, the following evaluation activities shall be performed to ensure the proper operation

of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the

TOE supported schemes. For each combination of supported key establishment scheme and its options (with our

without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is

supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate

10 sets of test vectors. Each test vector shall include the RSA private key, the plaintext keying material (KeyData),

any additional input parameters if applicable, the MacTag in cases where key confirmation is incorporated, and the

outputted ciphertext. For each test vector, the evaluator shall perform the key establishment decryption operation

on the TOE and ensure that the outputted plaintext keying material (KeyData) is equivalent to the plaintext keying

material in the test vector. In cases where key confirmation is incorporated, the evaluator shall perform the key

confirmation steps and ensure that the outputted MacTag is equivalent to the MacTag in the test vector.

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In accordance with NIST

Special Publication 800-56B, the TOE must not reveal the particular error that occurred, either through the

contents of any outputted or logged error message or through timing variations. If KTS-OAEP is supported, the

evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error checks

described in NIST Special Publication 800-56B section 7.2.2.3, ensure that each decryption attempt results in an

error, and ensure that any outputted or logged error message is identical for each. If KTS-KEM-KWS is supported,

the evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error

checks described in NIST Special Publication 800-56B section 7.2.3.3, ensure that each decryption attempt results

in an error, and ensure that any outputted or logged error message is identical for each.

RSA-based key establishment

The evaluator shall verify the correctness of the TSF's implementation of RSAESPKCS1-v1_5 by using a known good

implementation for each protocol selected in FTP_DIT_EXT.1 that uses RSAES-PKCS1-v1_5.

Diffie-Hellman Group 14

The evaluator shall verify the correctness of the TSF's implementation of Diffie-Hellman group 14 by using a known

good implementation for each protocol selected in FTP_DIT_EXT.1 that uses Diffie-Hellman group 14.

FFC Schemes using 'safe-prime' groups

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 14 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The evaluator shall verify the correctness of the TSF's implementation of safe-prime groups by using a known good

implementation for each protocol selected in FTP_DIT_EXT.1 that uses safe-prime groups. This test must be

performed for each safe-prime group that each protocol uses.

The TOE TNMS Client includes the CAVP-certified BC-FJA (Bouncy Castle FIPS Java API). See Section 1.2 for a listing

of CAVP certificates.

2.1.5 CRYPTOGRAPHIC OPERATION - HASHING (ASPP14:FCS_COP.1/HASH)

2.1.5.1 ASPP14:FCS_COP.1/HASH.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check that the association of the hash function with

other application cryptographic functions (for example, the digital signature verification function) is documented in

the TSS.

Section 6.1 of the ST states that the TOE uses SHA-1, SHA-256, SHA-384, and SHA-512 hashing when verifying the

TLS server’s authentication signature. The TOE also uses SHA-1 when hashing the user’s password (combined with

a 64-bit random salt).

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The TSF hashing functions can be implemented in one of two modes.

The first mode is the byte-oriented mode. In this mode the TSF hashes only messages that are an integral number

of bytes in length; i.e., the length (in bits) of the message to be hashed is divisible by 8. The second mode is the bit-

oriented mode. In this mode the TSF hashes messages of arbitrary length. As there are different tests for each

mode, an indication is given in the following sections for the bit-oriented vs. the byte-oriented testmacs. The

evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF and used to

satisfy the requirements of this PP.

The following tests require the developer to provide access to a test application that provides the evaluator with

tools that are typically not found in the production application.

Test 1: Short Messages Test - Bit oriented Mode The evaluators devise an input set consisting of m+1 messages,

where m is the block length of the hash algorithm. The length of the messages range sequentially from 0 to m bits.

The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the

messages and ensure that the correct result is produced when the messages are provided to the TSF.

Test 2: Short Messages Test - Byte oriented Mode The evaluators devise an input set consisting of m/8+1

messages, where m is the block length of the hash algorithm. The length of the messages range sequentially from

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 15 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

0 to m/8 bytes, with each message being an integral number of bytes. The message text shall be pseudorandomly

generated. The evaluators compute the message digest for each of the messages and ensure that the correct

result is produced when the messages are provided to the TSF.

Test 3: Selected Long Messages Test - Bit oriented Mode The evaluators devise an input set consisting of m

messages, where m is the block length of the hash algorithm. The length of the ith message is 512 + 99*i, where 1

<= i <= m. The message text shall be pseudorandomly generated. The evaluators compute the message digest for

each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.

Test 4: Selected Long Messages Test - Byte oriented Mode The evaluators devise an input set consisting of m/8

messages, where m is the block length of the hash algorithm. The length of the ith message is 512 + 8*99*i, where

1 <= i <= m/8. The message text shall be pseudorandomly generated. The evaluators compute the message digest

for each of the messages and ensure that the correct result is produced when the messages are provided to the

TSF.

Test 5: Pseudorandomly Generated Messages Test This test is for byte-oriented implementations only. The

evaluators randomly generate a seed that is n bits long, where n is the length of the message digest produced by

the hash function to be tested. The evaluators then formulate a set of 100 messages and associated digests by

following the algorithm provided in Figure 1 of [SHAVS]. The evaluators then ensure that the correct result is

produced when the messages are provided to the TSF.

The TOE TNMS Client includes the CAVP-certified BC-FJA (Bouncy Castle FIPS Java API). See Section 1.2 for a listing

of CAVP certificates.

2.1.6 CRYPTOGRAPHIC OPERATION - KEYED-HASH MESSAGE AUTHENTICATION - PER

TD0626 (ASPP14:FCS_COP.1/KEYEDHASH)

2.1.6.1 ASPP14:FCS_COP.1/KEYEDHASH.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: For each of the supported parameter sets, the evaluator shall compose

15 sets of test data. Each set shall consist of a key and message data. The evaluator shall have the TSF generate

HMAC tags for these sets of test data. The resulting MAC tags shall be compared to the result of generating HMAC

tags with the same key and IV using a known-good implementation.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 16 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The TOE TNMS Client includes the CAVP-certified BC-FJA (Bouncy Castle FIPS Java API). See Section 1.2 for a listing

of CAVP certificates.

2.1.7 CRYPTOGRAPHIC OPERATION - SIGNING (ASPP14:FCS_COP.1/SIG)

2.1.7.1 ASPP14:FCS_COP.1/SIG.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall perform the following activities based on the

selections in the ST.

The following tests require the developer to provide access to a test application that provides the evaluator with

tools that are typically not found in the production application.

ECDSA Algorithm Tests

Test 1: ECDSA FIPS 186-4 Signature Generation Test. For each supported NIST curve (i.e., P-256, P-384 and P-521)

and SHA function pair, the evaluator shall generate 10 1024-bit long messages and obtain for each message a

public key and the resulting signature values R and S. To determine correctness, the evaluator shall use the

signature verification function of a known good implementation.

Test 2: ECDSA FIPS 186-4 Signature Verification Test. For each supported NIST curve (i.e., P-256, P-384 and P-521)

and SHA function pair, the evaluator shall generate a set of 10 1024-bit message, public key and signature tuples

and modify one of the values (message, public key or signature) in five of the 10 tuples. The evaluator shall obtain

in response a set of 10 PASS/FAIL values.

RSA Signature Algorithm Tests

Test 1: Signature Generation Test. The evaluator shall verify the implementation of RSA Signature Generation by

the TOE using the Signature Generation Test. To conduct this test the evaluator must generate or obtain 10

messages from a trusted reference implementation for each modulus size/SHA combination supported by the TSF.

The evaluator shall have the TOE use their private key and modulus value to sign these messages. The evaluator

shall verify the correctness of the TSF's signature using a known good implementation and the associated public

keys to verify the signatures.

Test 2: Signature Verification Test. The evaluator shall perform the Signature Verification test to verify the ability of

the TOE to recognize another party's valid and invalid signatures. The evaluator shall inject errors into the test

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 17 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

vectors produced during the Signature Verification Test by introducing errors in some of the public keys, e,

messages, IR format, and/or signatures. The TOE attempts to verify the signatures and returns success or failure.

The TOE TNMS Client includes the CAVP-certified BC-FJA (Bouncy Castle FIPS Java API). See Section 1.2 for a listing

of CAVP certificates.

2.1.8 CRYPTOGRAPHIC OPERATION - ENCRYPTION/DECRYPTION

(ASPP14:FCS_COP.1/SKC)

2.1.8.1 ASPP14:FCS_COP.1/SKC.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: The evaluator checks the AGD documents to determine that any

configuration that is required to be done to configure the functionality for the required modes and key sizes is

present.

The TOE generates 128 and 256-bit AES keys during the TLS handshake and uses its Bouncy Castle cryptographic

library to generate the random values used during the handshake. Section 3.5.4 TLS Configuration notes that

“Other than setting the trusted root certificates, TLS settings in TNMS Client – such as supported cipher suites and

key sizes - are fixed and not configurable by the user.” Additionally, Section 3.4 Enabling FIPS mode indicates that

the TOE installation requires setting up the cryptographic library into FIPS mode in order to be in compliance with

the Common Criteria evaluated configuration. Additionally, this section also states that the use of any other

cryptographic engines, or configurations other than what is described in this section was not evaluated nor tested

during the Common Criteria Evaluation of TNMS Client

Component Testing Assurance Activities: The evaluator shall perform all of the following tests for each algorithm

implemented by the TSF and used to satisfy the requirements of this PP:

AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV values

shall be 128-bit blocks. The results from each test may either be obtained by the evaluator directly or by supplying

the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall

compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 plaintext values and

obtain the ciphertext value that results from AES-CBC encryption of the given plaintext using a key value of all

zeros and an IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 18 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

shall be encrypted with a 256-bit all- zeros key. To test the decrypt functionality of AES-CBC, the evaluator shall

perform the same test as for encrypt, using 10 ciphertext values as input and AES-CBC decryption.

KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key values and obtain the

ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using the given key value and an IV

of all zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-bit keys. To test the decrypt

functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using an all-zero ciphertext

value as input and AES-CBC decryption.

KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key values described

below and obtain the ciphertext value that results from AES encryption of an all-zeros plaintext using the given key

value and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the second set shall have 256 256-

bit keys. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. To

test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and ciphertext value pairs

described below and obtain the plaintext value that results from AES-CBC decryption of the given ciphertext using

the given key and an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs,

and the second set of key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall have

the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair shall

be the value that results in an all-zeros plaintext when decrypted with its corresponding key.

KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128 plaintext values

described below and obtain the two ciphertext values that result from AES-CBC encryption of the given plaintext

using a 128-bit key value of all zeros with an IV of all zeros and using a 256-bit key value of all zeros with an IV of all

zeros, respectively. Plaintext value i in each set shall have the leftmost i bits be ones and the rightmost 128-i bits

be zeros, for i in [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using

ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC decryption.

AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <= 10. The evaluator

shall choose a key, an IV and plaintext message of length i blocks and encrypt the message, using the mode to be

tested, with the chosen key and IV. The ciphertext shall be compared to the result of encrypting the same plaintext

message with the same key and IV using a known good implementation. The evaluator shall also test the decrypt

functionality for each mode by decrypting an i-block message where 1 < i <=10. The evaluator shall choose a key,

an IV and a ciphertext message of length i blocks and decrypt the message, using the mode to be tested, with the

chosen key and IV. The plaintext shall be compared to the result of decrypting the same ciphertext message with

the same key and IV using a known good implementation.

AES-CBC Monte Carlo Tests

The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3- tuples. 100 of these

shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-

tuple, 1000 iterations shall be run as follows:

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 19 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Input: PT, IV, Key

for i = 1 to 1000:

if i == 1:

CT[1] = AES-CBC-Encrypt(Key, IV, PT)

PT = IV

else:

CT[i] = AES-CBC-Encrypt(Key, PT)

PT = CT[i-1]

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that trial. This result shall be

compared to the result of running 1000 iterations with the same values using a known good implementation. The

evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and PT and

replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

AES-GCM Monte Carlo Tests

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the following

input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128 bits, if supported.

The other plaintext length shall not be an integer multiple of 128 bits, if supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero integer multiple of

128 bits, if supported. One AAD length shall not be an integer multiple of 128 bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for each

combination of parameter lengths above and obtain the ciphertext value and tag that results from AES-GCM

authenticated encrypt. Each supported tag length shall be tested at least once per set of 10. The IV value may be

supplied by the evaluator or the implementation being tested, as long as it is known.

The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-tuples for

each combination of parameter lengths above and obtain a Pass/Fail result on authentication and the decrypted

plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the

implementer and receiving the results in response. To determine correctness, the evaluator shall compare the

resulting values to those obtained by submitting the same inputs to a known good implementation.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 20 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

AES-XTS Tests

The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input parameter

lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero integer multiple of 128

bits, if supported. One of the data unit lengths shall be an integer multiple of 128 bits, if supported. The third data

unit length shall be either the longest supported data unit length or 216 bits, whichever is smaller.

Using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext that results

from XTS-AES encrypt. The evaluator may supply a data unit sequence number instead of the tweak value if the

implementation supports it. The data unit sequence number is a base-10 number ranging between 0 and 255 that

implementations convert to a tweak value internally.

The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing plaintext

values with ciphertext values and XTS-AES encrypt with XTS-AES decrypt.

AES-CCM Tests

It is not recommended that evaluators use values obtained from static sources such as

http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip or use values not generated expressly

to exercise the AES-CCM implementation.

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM for the

following input parameter and tag lengths:

Keys: All supported and selected key sizes (e.g., 128, 256 bits).

Associated Data: Two or three values for associated data length: The minimum (. 0 bytes) and maximum (. 32

bytes) supported associated data lengths, and 2^16 (65536) bytes, if supported.

Payload: Two values for payload length: The minimum (. 0 bytes) and maximum (. 32 bytes) supported payload

lengths.

Nonces: All supported nonce lengths (7, 8, 9, 10, 11, 12, 13) in bytes.

Tag: All supported tag lengths (4, 6, 8, 10, 12, 14, 16) in bytes.

The testing for CCM consists of five tests. To determine correctness in each of the below tests, the evaluator shall

compare the ciphertext with the result of encryption of the same inputs with a known good implementation.

Variable Associated Data Test

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 21 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

For each supported key size and associated data length, and any supported payload length, nonce length, and tag

length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload

values, and obtain the resulting ciphertext.

Variable Payload Test

For each supported key size and payload length, and any supported associated data length, nonce length, and tag

length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload

values, and obtain the resulting ciphertext.

Variable Nonce Test

For each supported key size and nonce length, and any supported associated data length, payload length, and tag

length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload

values, and obtain the resulting ciphertext.

Variable Tag Test

For each supported key size and tag length, and any supported associated data length, payload length, and nonce

length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload

values, and obtain the resulting ciphertext.

Decryption-Verification Process Test

To test the decryption-verification functionality of AES-CCM, for each combination of supported associated data

length, payload length, nonce length, and tag length, the evaluator shall supply a key value and 15 sets of input

plus ciphertext, and obtain the decrypted payload. Ten of the 15 input sets supplied should fail verification and five

should pass.

AES-CTR Tests

Test 1: Known Answer Tests (KATs)

There are four Known Answer Tests (KATs) described below. For all KATs, the plaintext, IV, and ciphertext values

shall be 128-bit blocks. The results from each test may either be obtained by the validator directly or by supplying

the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall

compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

To test the encrypt functionality, the evaluator shall supply a set of 10 plaintext values and obtain the ciphertext

value that results from encryption of the given plaintext using a key value of all zeros and an IV of all zeros. Five

plaintext values shall be encrypted with a 128-bit all zeros key, and the other five shall be encrypted with a 256-bit

all zeros key. To test the decrypt functionality, the evaluator shall perform the same test as for encrypt, using 10

ciphertext values as input.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 22 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

To test the encrypt functionality, the evaluator shall supply a set of 10 key values and obtain the ciphertext value

that results from encryption of an all zeros plaintext using the given key value and an IV of all zeros. Five of the key

values shall be 128-bit keys, and the other five shall be 256-bit keys. To test the decrypt functionality, the evaluator

shall perform the same test as for encrypt, using an all zero ciphertext value as input.

To test the encrypt functionality, the evaluator shall supply the two sets of key values described below and obtain

the ciphertext values that result from AES encryption of an all zeros plaintext using the given key values an an IV of

all zeros. The first set of keys shall have 128 128-bit keys, and the second shall have 256 256-bit keys. Key_i in each

set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1, N]. To test the decrypt

functionality, the evaluator shall supply the two sets of key and ciphertext value pairs described below and obtain

the plaintext value that results from decryption of the given ciphertext using the given key values and an IV of all

zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs, and the second set of

key/ciphertext pairs shall have 256 256-bit pairs. Key_i in each set shall have the leftmost i bits be ones and the

rightmost N-i bits be zeros for i in [1, N]. The ciphertext value in each pair shall be the value that results in an all

zeros plaintext when decrypted with its corresponding key.

To test the encrypt functionality, the evaluator shall supply the set of 128 plaintext values described below and

obtain the two ciphertext values that result from encryption of the given plaintext using a 128-bit key value of all

zeros and using a 256 bit key value of all zeros, respectively, and an IV of all zeros. Plaintext value i in each set shall

have the leftmost bits be ones and the rightmost 128-i bits be zeros, for i in [1, 128]. To test the decrypt

functionality, the evaluator shall perform the same test as for encrypt, using ciphertext values of the same form as

the plaintext in the encrypt test as input.

Test 2: Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 less-than i less-than-or-

equal to 10. For each i the evaluator shall choose a key, IV, and plaintext message of length i blocks and encrypt

the message, using the mode to be tested, with the chosen key. The ciphertext shall be compared to the result of

encrypting the same plaintext message with the same key and IV using a known good implementation. The

evaluator shall also test the decrypt functionality by decrypting an i-block message where 1 less-than i less-than-

or-equal to 10. For each i the evaluator shall choose a key and a ciphertext message of length i blocks and decrypt

the message, using the mode to be tested, with the chosen key. The plaintext shall be compared to the result of

decrypting the same ciphertext message with the same key using a known good implementation.

Test 3: Monte-Carlo Test

For AES-CTR mode perform the Monte Carlo Test for ECB Mode on the encryption engine of the counter mode

implementation. There is no need to test the decryption engine.

The evaluator shall test the encrypt functionality using 200 plaintext/key pairs. 100 of these shall use 128 bit keys,

and 100 of these shall use 256 bit keys. The plaintext values shall be 128-bit blocks. For each pair, 1000 iterations

shall be run as follows:

For AES-ECB mode

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 23 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Input: PT, Key

for i = 1 to 1000:

CT[i] = AES-ECB-Encrypt(Key, PT)

PT = CT[i]

The ciphertext computed in the 1000th iteration is the result for that trial. This result shall be compared to the

result of running 1000 iterations with the same values using a known good implementation.

The TOE TNMS Client includes the CAVP-certified BC-FJA (Bouncy Castle FIPS Java API). See Section 1.2 for a listing

of CAVP certificates.

2.1.9 RANDOM BIT GENERATION SERVICES (ASPP14:FCS_RBG_EXT.1)

2.1.9.1 ASPP14:FCS_RBG_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: If 'use no DRBG functionality' is selected, the evaluator shall inspect the

application and its developer documentation and verify that the application needs no random bit generation

services.

If 'implement DRBG functionality' is selected, the evaluator shall ensure that additional FCS_RBG_EXT.2 elements

are included in the ST.

If 'invoke platform-provided DRBG functionality' is selected, the evaluator performs the following activities.

The evaluator shall examine the TSS to confirm that it identifies all functions (as described by the SFRs included in

the ST) that obtain random numbers from the platform RBG. The evaluator shall determine that for each of these

functions, the TSS states which platform interface (API) is used to obtain the random numbers. The evaluator shall

confirm that each of these interfaces corresponds to the acceptable interfaces listed for each platform below.

It should be noted that there is no expectation that the evaluators attempt to confirm that the APIs are being used

correctly for the functions identified in the TSS; the activity is to list the used APIs and then do an existence check

via decompilation.

The ST claims that the TOE both invokes the platform-provided DRBG functionality and implements DRBG

functionality as Section 6.1 states that the TOE invokes the platforms-provided DRBG functionality in order to obtain

seeding material for its DRBG. As a result, the additional SFR FCS_RBG_EXT.2 was included in the ST.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 24 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Section 6.1 also states that the TOE implements a DRBG in its Bouncy Castle library and uses that DRBG when

generating per-user salts as well as when generating random values used in TLS handshakes and PKBDF credential

transformation.

Further information is shared under FCS_RBG_EXT.2 under Section 6.1 of the ST including the API used as the ST

states the TOE obtains entropy to seed its DRBG from the platform through the BCryptGenRandom Windows API.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: If 'invoke platform-provided DRBG functionality' is selected, the

following tests shall be performed:

The evaluator shall decompile the application binary using a decompiler suitable for the application (TOE). The

evaluator shall search the output of the decompiler to determine that, for each API listed in the TSS, that API

appears in the output. If the representation of the API does not correspond directly to the strings in the following

list, the evaluator shall provide a mapping from the decompiled text to its corresponding API, with a description of

why the API text does not directly correspond to the decompiled text and justification that the decompiled text

corresponds to the associated API.

The following are the per-platform list of acceptable APIs:

Platforms: Android....

The evaluator shall verify that the application uses at least one of javax.crypto.KeyGenerator class or the

java.security.SecureRandom class or /dev/random or /dev/urandom.

Platforms: Microsoft Windows....

The evaluator shall verify that rand_s, RtlGenRandom, BCryptGenRandom, or CryptGenRandom API is used for

classic desktop applications. The evaluator shall verify the application uses the RNGCryptoServiceProvider class or

derives a class from System.Security.Cryptography.RandomNumberGenerator API for Windows Universal

Applications. It is only required that the API is called/invoked, there is no requirement that the API be used

directly. In future versions of this document, CryptGenRandom may be removed as an option as it is no longer the

preferred API per vendor documentation.

Platforms: Apple iOS....

The evaluator shall verify that the application invokes either SecRandomCopyBytes, CCRandomGenerateBytes or

CCRandomCopyBytes, or uses /dev/random directly to acquire random.

Platforms: Linux....

The evaluator shall verify that the application collects random from /dev/random or /dev/urandom.

Platforms: Oracle Solaris....

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 25 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The evaluator shall verify that the application invokes either CCRandomGenerateBytes or CCRandomCopyBytes, or

collects random from /dev/random.

Platforms: Apple macOS....

The evaluator shall verify that the application invokes either CCRandomGenerateBytes or CCRandomCopyBytes, or

collects random from /dev/random.

If invocation of platform-provided functionality is achieved in another way, the evaluator shall ensure the TSS

describes how this is carried out, and how it is equivalent to the methods listed here (e.g. higher-level API invokes

identical low-level API).

The evaluator examined the Java Virtual Machine to view the list of loaded modules and found the BCrypt.dll

module loaded. The evaluator noted that this is the module that contains the Windows API for BCryptGenRandom

referenced in the test assurance activity. The evaluator used an additional tool that scanned the Java application

and listed each function that was imported from the referenced module and found that Java was importing

BCryptGenRandom.

2.1.10 RANDOM BIT GENERATION FROM APPLICATION (ASPP14:FCS_RBG_EXT.2)

2.1.10.1 ASPP14:FCS_RBG_EXT.2.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator shall perform the following tests, depending on the standard to which

the RBG conforms. Implementations Conforming to FIPS 140-2 Annex C. The reference for the tests contained in

this section is The Random Number Generator Validation System (RNGVS). The evaluators shall conduct the

following two tests. Note that the 'expected values' are produced by a reference implementation of the algorithm

that is known to be correct. Proof of correctness is left to each Scheme.

Test 1: The evaluators shall perform a Variable Seed Test. The evaluators shall provide a set of 128 (Seed, DT) pairs

to the TSF RBG function, each 128 bits. The evaluators shall also provide a key (of the length appropriate to the

AES algorithm) that is constant for all 128 (Seed, DT) pairs. The DT value is incremented by 1 for each set. The seed

values shall have no repeats within the set. The evaluators ensure that the values returned by the TSF match the

expected values.

Test 2: The evaluators shall perform a Monte Carlo Test. For this test, they supply an initial Seed and DT value to

the TSF RBG function; each of these is 128 bits. The evaluators shall also provide a key (of the length appropriate to

the AES algorithm) that is constant throughout the test. The evaluators then invoke the TSF RBG 10,000 times, with

the DT value being incremented by 1 on each iteration, and the new seed for the subsequent iteration produced as

specified in NISTRecommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 26 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Triple DES and AES Algorithms, Section E.3. The evaluators ensure that the 10,000th value produced matches the

expected value.

Implementations Conforming to NIST Special Publication 800-90A

Test 1: The evaluator shall perform 15 trials for the RNG implementation. If the RNG is configurable, the evaluator

shall perform 15 trials for each configuration. The evaluator shall also confirm that the operational guidance

contains appropriate instructions for configuring the RNG functionality.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate the first block

of random bits (3) generate a second block of random bits (4) uninstantiate. The evaluator verifies that the second

block of random bits is the expected value. The evaluator shall generate eight input values for each trial. The first is

a count (0 â€“ 14). The next three are entropy input, nonce, and personalization string for the instantiate

operation. The next two are additional input and entropy input for the first call to generate. The final two are

additional input and entropy input for the second call to generate. These values are randomly generated. 'generate

one block of random bits' means to generate random bits with number of returned bits equal to the Output Block

Length (as defined in NIST SP 800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2) generate the first

block of random bits (3) reseed, (4) generate a second block of random bits (5) uninstantiate. The evaluator verifies

that the second block of random bits is the expected value. The evaluator shall generate eight input values for

each trial. The first is a count (0 â€“ 14). The next three are entropy input, nonce, and personalization string for the

instantiate operation. The fifth value is additional input to the first call to generate. The sixth and seventh are

additional input and entropy input to the call to reseed. The final value is additional input to the second generate

call.

The following paragraphs contain more information on some of the input values to be generated/selected by the

evaluator.

Entropy input: the length of the entropy input value must equal the seed length.

Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce), the nonce bit length

is one-half the seed length. Personalization string: The length of the personalization string must be less then or

equal to seed length. If the implementation only supports one personalization string length, then the same length

can be used for both values. If more than one string length is support, the evaluator shall use personalization

strings of two different lengths. If the implementation does not use a personalization string, no value needs to be

supplied.

Additional input: the additional input bit lengths have the same defaults and restrictions as the personalization

string lengths.

The TOE TNMS Client includes the CAVP-certified BC-FJA (Bouncy Castle FIPS Java API). See Section 1.2 for a listing

of CAVP certificates.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 27 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

2.1.10.2 ASPP14:FCS_RBG_EXT.2.2

TSS Assurance Activities: Documentation shall be produced - and the evaluator shall perform the activities - in

accordance with Appendix D - Entropy Documentation and Assessment and the Clarification to the Entropy

Documentation and Assessment Annex.

Entropy documentation has been provided to NIAP. Additionally, section 6.1 of the ST summarizes the DRGB

functionality.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: In the future, specific statistical testing (in line with NIST SP 800-90B) will be required

to verify the entropy estimates.

No further testing activities are currently required.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.1.11 STORAGE OF CREDENTIALS (ASPP14:FCS_STO_EXT.1)

2.1.11.1 ASPP14:FCS_STO_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check the TSS to ensure that it lists all persistent

credentials (secret keys, PKI private keys, or passwords) needed to meet the requirements in the ST. For each of

these items, the evaluator shall confirm that the TSS lists for what purpose it is used, and how it is stored.

For this requirement, the ST claims that the TOE application shall not store any credentials to non-volatile memory.

Section 6.1 of the ST is consistent with claim as it states the TOE does not store any credentials.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: For all credentials for which the application implements functionality,

the evaluator shall verify credentials are encrypted according to FCS_COP.1/SKC or conditioned according to

FCS_CKM.1.1/AK and FCS_CKM.1/PBKDF. For all credentials for which the application invokes platform-provided

functionality, the evaluator shall perform the following actions which vary per platform.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 28 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Platforms: Android....

The evaluator shall verify that the application uses the Android KeyStore or the Android KeyChain to store

certificates.

Platforms: Microsoft Windows....

The evaluator shall verify that all certificates are stored in the Windows Certificate Store. The evaluator shall verify

that other credentials, like passwords, are stored in the Windows Credential Manager or stored using the Data

Protection API (DPAPI). For Windows Universal Applications, the evaluator shall verify that the application is using

the ProtectData class and storing credentials in IsolatedStorage.

Platforms: Apple iOS....

The evaluator shall verify that all credentials are stored within a Keychain.

Platforms: Linux....

The evaluator shall verify that all keys are stored using Linux keyrings.

Platforms: Oracle Solaris....

The evaluator shall verify that all keys are stored using Solaris Key Management Framework (KMF).

Platforms: Apple macOS....

The evaluator shall verify that all credentials are stored within Keychain

The TOE does not claim to store any credentials. As a result, there are no credentials for which this test applies.

2.1.12 TLS PROTOCOL (PKGTLS11:FCS_TLS_EXT.1)

2.1.12.1 PKGTLS11:FCS_TLS_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: The evaluator shall ensure that the selections indicated in the ST are consistent

with selections in the dependent components.

The evaluator examined both the ST and the AGD and only found claims to the TOE operating as a TLS Client. As a

result, PKGTLS11:FCS_TLSC_EXT.1 is claimed in the ST. Additionally, since the TOE claims elliptic curve under

PKGTLS11:FCS_TLSC_EXT.1.1, the evaluator ensured that PKGTLS11:FCS_TLSC_EXT.5 was included in the ST and in

testing. The evaluator found no references in the ST or AGD to indicate support for mutual authentication

(PKGTLS11:FCS_TLSC_EXT.2), limiting of hashing algorithms under the Client Hello signature algorithms extension

(PKGTLS11:FCS_TLSC_EXT.3), renegotiation (PKGTLS11:FCS_TLSC_EXT.4), TLS as a server

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 29 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

(PKGTLS11:FCS_TLSS_EXT.*), or DTLS (PKGTLS11:FCS_DTLS*). The evaluator further examined the TSS and AGD and

found no claims that contradicted any of the more specific claims under this SFR.

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.1.13 TLS CLIENT PROTOCOL (PKGTLS11:FCS_TLSC_EXT.1)

2.1.13.1 PKGTLS11:FCS_TLSC_EXT.1.1

TSS Assurance Activities: The evaluator shall check the description of the implementation of this protocol in the

TSS to ensure that the cipher suites supported are specified. The evaluator shall check the TSS to ensure that the

cipher suites specified include those listed for this component.

Section 6.1 of the ST states the TOE supports the cipher suites selected in section Error! Reference source not

found. (which is a reference to the cipher suite claim under PKGTLS11:FCS_TLSC_EXT.1.1).

Guidance Assurance Activities: The evaluator shall also check the operational guidance to ensure that it contains

instructions on configuring the product so that TLS conforms to the description in the TSS.

The evaluator followed the TLS configuration described in the AGD under Section 3.5.4 TLS Configuration. As

stated in that section, Section 3.5.4 TLS Configuration notes that “Other than setting the trusted root certificates,

TLS settings in TNMS Client – such as supported cipher suites and key sizes - are fixed and not configurable by the

user.” The evaluator also referred to Section 3.5 Managing Root Certificates in general as this section was directly

referenced by the previous quote. The evaluator followed the above sections to ensure that the list of trusted

credentials was correctly configured, however, no additional steps were required to ensure that TLS conforms to

the description provided in the TSS or the configuration used for testing.

Testing Assurance Activities: The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a TLS connection using each of the cipher suites specified by the requirement.

This connection may be established as part of the establishment of a higher-level protocol, e.g., as part of an EAP

session. It is sufficient to observe the successful negotiation of a cipher suite to satisfy the intent of the test; it is

not necessary to examine the characteristics of the encrypted traffic in an attempt to discern the cipher suite being

used (for example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).

Test 2: The goal of the following test is to verify that the TOE accepts only certificates with appropriate values in

the extendedKeyUsage extension, and implicitly that the TOE correctly parses the extendedKeyUsage extension as

part of X.509v3 server certificate validation. The evaluator shall attempt to establish the connection using a server

with a server certificate that contains the Server Authentication purpose in the extendedKeyUsage extension and

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 30 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

verify that a connection is established. The evaluator shall repeat this test using a different, but otherwise valid

and trusted, certificate that lacks the Server Authentication purpose in the extendedKeyUsage extension and

ensure that a connection is not established. Ideally, the two certificates should be similar in structure, the types of

identifiers used, and the chain of trust.

Test 3: The evaluator shall send a server certificate in the TLS connection that does not match the server-selected

cipher suite (for example, send a ECDSA certificate while using the TLS_RSA_WITH_AES_128_CBC_SHA

cipher suite or send a RSA certificate while using one of the ECDSA cipher suites.) The evaluator shall verify that

the product disconnects after receiving the server's Certificate handshake message.

Test 4: The evaluator shall configure the server to select the TLS_NULL_WITH_NULL_NULL cipher suite and verify

that the client denies the connection.

Test 5: The evaluator shall perform the following modifications to the traffic:

Test 5.1: Change the TLS version selected by the server in the Server Hello to an undefined TLS version (for

example 1.5 represented by the two bytes 03 06) and verify that the client rejects the connection.

Test 5.2: Change the TLS version selected by the server in the Server Hello to the most recent unsupported TLS

version (for example 1.1 represented by the two bytes 03 02) and verify that the client rejects the connection.

Test 5.3: [conditional] If DHE or ECDHE cipher suites are supported, modify at least one byte in the server's nonce

in the Server Hello handshake message, and verify that the client does not complete the handshake and no

application data flows.

Test 5.4: Modify the server's selected cipher suite in the Server Hello handshake message to be a cipher suite not

presented in the Client Hello handshake message. The evaluator shall verify that the client does not complete the

handshake and no application data flows.

Test 5.5: [conditional] If DHE or ECDHE cipher suites are supported, modify the signature block in the server's Key

Exchange handshake message, and verify that the client does not complete the handshake and no application data

flows. This test does not apply to cipher suites using RSA key exchange. If a TOE only supports RSA key exchange in

conjunction with TLS, then this test shall be omitted.

Test 5.6: Modify a byte in the Server Finished handshake message, and verify that the client does not complete the

handshake and no application data flows.

Test 5.7: Send a message consisting of random bytes from the server after the server has issued the Change Cipher

Spec message and verify that the client does not complete the handshake and no application data flows. The

message must still have a valid 5-byte record header in order to ensure the message will be parsed as TLS.

Test 1 – The evaluator made a TLS connection using each of the claimed ciphersuites. The evaluator was able to

capture each ciphersuite using a packet capture

Test 2 – The evaluator configured a server to use TLS. The evaluator then attempted to connect to the TLS server

using a server certificate with a valid serverAuth EKU and showed this connection was accepted. The evaluator

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 31 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

then attempted to connect to a server using a certificate that lacks server authentication purpose in the EKU field

and the attempt was rejected.

Test 3 – The evaluator configured a server to use an RSA TLS server certificate, but negotiate the incompatible

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ciphersuite. The evaluator attempted to connect the TOE to this

server and show that the connection was rejected.

Test 4 – The evaluator configured a server to use TLS and to require the TLS_NULL_WITH_NULL_NULL ciphersuite.

The evaluator attempted to connect the TOE to the server and the attempt was rejected.

Test 5.1 – The evaluator configured the TOE to connect to a TLS server that only supported a non-TOE-supported

TLS version (version 1.5 represented by two byes 0x0306 in the TLS Server Hello Message). The connection

attempt was rejected.

Test 5.2 – The TOE supports TLS 1.2. The evaluator attempted to connect the TOE to a TLS server that only

supported the most-recent non-TOE-supported TLS version, version 1.1 represented by 0x0302 in the TLS Server

Hello Message. The evaluator also attempted to connect the TOE to a TLS server that only supported TLS version

1.0, represented by 0x0301 in the TLS Server Hello Message. Both connection attempts were rejected.

Test 5.3 – The evaluator attempted to connect the TOE to a TLS server using Corrupting the first byte of sent server

hello nonce. The connection attempt was rejected.

Test 5.4 – The evaluator attempted to connect the TOE to a TLS server that was configured to ignore the TLS Client

Hello cipher suites and only use a non-supported cipher suite, TLS_KRB5_EXPORT_WITH_DES_CBC_40_MD5. The

connection attempt was rejected.

Test 5.5 – The evaluator attempted to connect the TOE to a TLS server. The evaluator modified the TLS server’s

key exchange message to change the first byte from 0x5f to 0xb4. The evaluator found that the connection

attempt was rejected.

Test 5.6 – The evaluator attempted to connect the TOE to a TLS server. The evaluator modified the TLS server’s

finished handshake message MAC (0x17 to 0xe8). The evaluator found that the connection attempt was rejected.

Test 5.7 – The evaluator attempted to connect the TOE to a TLS server. The evaluator modified the TLS server’s

finished handshake message to consist of random data. The evaluator found that the connection attempt was

rejected and no application data flowed.

2.1.13.2 PKGTLS11:FCS_TLSC_EXT.1.2

TSS Assurance Activities: The evaluator shall ensure that the TSS describes the client's method of establishing all

reference identifiers from the application-configured reference identifier, including which types of reference

identifiers are supported (e.g. Common Name, DNS Name, URI Name, Service Name, or other application-specific

Subject Alternative Names) and whether IP addresses and wildcards are supported. The evaluator shall ensure that

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 32 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

this description identifies whether and the manner in which certificate pinning is supported or used by the

product.

Section 6.1 of the ST states the TOE uses the user provided server name (either a FQDN or an IP address) when

checking the server’s certificate for the expected reference identifier. The TOE supports Common Name, SAN:FQDN

SAN:IP reference identifiers, and wildcards and does not support certificate/public key pinning.

Guidance Assurance Activities: The evaluator shall verify that the AGD guidance includes instructions for setting

the reference identifier to be used for the purposes of certificate validation in TLS.

The TOE is only able to initiate connections to the external TNMS Server through its login prompts and all following

connections are protected by TLS. The evaluator followed the information in Section 3.9 TNMS Login where the

AGD notes how to initiate connections, including the required “Server name”, “user name”, and “password” fields.

The evaluator noted that the AGD claims support for IP address or FQDN identifiers for the server’s name.

Testing Assurance Activities: The evaluator shall configure the reference identifier according to the AGD guidance

and perform the following tests during a TLS connection. If the TOE supports certificate pinning, all pinned

certificates must be removed before performing Tests 1 through 6. A pinned certificate must be added prior to

performing Test 7. (TD0499 applied)

Test 1: The evaluator shall present a server certificate that contains a CN that does not match the reference

identifier and does not contain the SAN extension. The evaluator shall verify that the connection fails. Note that

some systems might require the presence of the SAN extension. In this case the connection would still fail but for

the reason of the missing SAN extension instead of the mismatch of CN and reference identifier. Both reasons are

acceptable to pass Test 1.

Test 2: The evaluator shall present a server certificate that contains a CN that matches the reference identifier,

contains the SAN extension, but does not contain an identifier in the SAN that matches the reference identifier.

The evaluator shall verify that the connection fails. The evaluator shall repeat this test for each supported SAN

type.

Test 3: [conditional] If the TOE does not mandate the presence of the SAN extension, the evaluator shall present a

server certificate that contains a CN that matches the reference identifier and does not contain the SAN extension.

The evaluator shall verify that the connection succeeds. If the TOE does mandate the presence of the SAN

extension, this Test shall be omitted.

Test 4: The evaluator shall present a server certificate that contains a CN that does not match the reference

identifier but does contain an identifier in the SAN that matches. The evaluator shall verify that the connection

succeeds.

Test 5: The evaluator shall perform the following wildcard tests with each supported type of reference identifier.

The support for wildcards is intended to be optional. If wildcards are supported, the first, second, and third tests

below shall be executed. If wildcards are not supported, then the fourth test below shall be executed.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 33 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Test 5.1: [conditional]: If wildcards are supported, the evaluator shall present a server certificate containing a

wildcard that is not in the left-most label of the presented identifier (e.g. foo.*.example.com) and verify that the

connection fails.

Test 5.2: [conditional]: If wildcards are supported, the evaluator shall present a server certificate containing a

wildcard in the left-most label but not preceding the public suffix (e.g. *.example.com). The evaluator shall

configure the reference identifier with a single left-most label (e.g. foo.example.com) and verify that the

connection succeeds. The evaluator shall configure the reference identifier without a left-most label as in the

certificate (e.g. example.com) and verify that the connection fails. The evaluator shall configure the reference

identifier with two left-most labels (e.g. bar.foo.example.com) and verify that the connection fails.

Test 5.3: [conditional]: If wildcards are supported, the evaluator shall present a server certificate containing a

wildcard in the left-most label immediately preceding the public suffix (e.g. *.com). The evaluator shall configure

the reference identifier with a single left-most label (e.g. foo.com) and verify that the connection fails. The

evaluator shall configure the reference identifier with two left-most labels (e.g. bar.foo.com) and verify that the

connection fails.

Test 5.4: [conditional]: If wildcards are not supported, the evaluator shall present a server certificate containing a

wildcard in the left-most label (e.g. *.example.com). The evaluator shall configure the reference identifier with a

single left-most label (e.g. foo.example.com) and verify that the connection fails.

Test 6: [conditional] If URI or Service name reference identifiers are supported, the evaluator shall configure the

DNS name and the service identifier. The evaluator shall present a server certificate containing the correct DNS

name and service identifier in the URIName or SRVName fields of the SAN and verify that the connection succeeds.

The evaluator shall repeat this test with the wrong service identifier (but correct DNS name) and verify that the

connection fails.

Test 7: [conditional] If pinned certificates are supported the evaluator shall present a certificate that does not

match the pinned certificate and verify that the connection fails.

Test 1 – The evaluator attempted to connect the TOE to a TLS server using a certificate that contains a CN that

does not match the reference identifier and does not contain the SAN extension. This evaluator observed that this

connection was rejected.

Test 2 – This was tested alongside the previous test, FCS_TLSC_EXT.1-t1. The evaluator attempted to connect the

TOE to a TLS server using a certificate that contains a CN that matches the reference identifier, contains the SAN

extension, but does not contain an identifier in the SAN that matches the reference identifier. The evaluator

observed that this connection was rejected.

Test 3 - This was tested alongside the previous test, FCS_TLSC_EXT.1-t1. The evaluator attempted to connect the

TOE to a TLS server using a certificate that contains a CN that matches the reference identifier and does not

contain the SAN extension. The evaluator observed that this connection was accepted.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 34 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Test 4 - This was tested alongside the previous test, FCS_TLSC_EXT.1-t1. The evaluator attempted to connect the

TOE to a TLS server using a certificate that does not match the reference identifier but does contain an identifier in

the SAN that matches. The evaluator observed that this connection was accepted.

Test 5 - This was tested alongside the previous test, FCS_TLSC_EXT.1-t1. The evaluator attempted to connect the

TOE to a TLS server using a certificate that met the following requirements. The evaluator alternated between

testing wildcard tests between CN and SAN identifiers and found identical behaviors for both.

Test 5.1 – The evaluator connected the TOE to a TLS server using certificates containing a wildcard that is not in the

left-most label of the presented identifier (foo.*.example.com) and both connections failed.

Test 5.2 - The evaluator connected the TOE to a TLS server using certificates containing a wildcard in the left-most

label but not preceding the public suffix (*.example.com). The evaluator shall configure the reference identifier

with a single left-most label (foo.example.com) and both connections succeeded.

Using the same TLS server certificates, the evaluator attempted to connect to the reference identifier without a

left-most label as in the certificate (example.com) and both connections failed.

Using the same TLS server certificates, the evaluator attempted to connect to the reference identifier with two

left-most labels (bar.foo.example.com) and both that the connection failed.

Test 5.3 - The evaluator connected the TOE to a TLS server using certificates containing a wildcard in the left-most

label immediately preceding the public suffix (*.com). The evaluator attempted to connect the TOE using a

reference identifier with a single left-most label (foo.com) and observed both connections failed. The evaluator

attempted to configure the reference identifier with two left-most labels (bar.foo.com) and observed both

connections failed.

Test 5.4 – Not applicable, the TOE does support wildcards in both the CN and SAN fields.

Test 6 – Not applicable, the TOE does not claim support for URI or Service name reference identifiers.

Test 7 – Not applicable, the TOE does not support pinned certificates.

2.1.13.3 PKGTLS11:FCS_TLSC_EXT.1.3

TSS Assurance Activities: If the selection for authorizing override of invalid certificates is made, then the evaluator

shall ensure that the TSS includes a description of how and when user or administrator authorization is obtained.

The evaluator shall also ensure that the TSS describes any mechanism for storing such authorizations, such that

future presentation of such otherwise-invalid certificates permits establishment of a trusted channel without user

or administrator action.

The ST does not claim any exceptions for overriding invalid certificates. As a result, the TSS does not provided

additional descriptions on how authorization is obtained or how authorizations are stored.

Guidance Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 35 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Testing Assurance Activities: The evaluator shall demonstrate that using an invalid certificate results in the

function failing as follows, unless excepted:

Test 1a: The evaluator shall demonstrate that a server using a certifcate with a valid certification path successfully

connects.

Test 1b: The evaluator shall modify the certificate chain used by the server in test 1a to be invalid and demonstrate

that a server using a certificate without a valid certification path to a trust store element of the TOE results in an

authentication failure.

Test 1c [conditional]: If the TOE trust store can be managed, the evaluator shall modify the trust store element

used in Test 1a to be untrusted and demonstrate that a connection attempt from the same server used in Test 1a

results in an authentication failure.

(TD0513 applied)

Test 2: The evaluator shall demonstrate that a server using a certificate which has been revoked results in an

authentication failure.

Test 3: The evaluator shall demonstrate that a server using a certificate which has passed its expiration date results

in an authentication failure.

Test 4: The evaluator shall demonstrate that a server using a certificate which does not have a valid identifier

results in an authentication failure.

Test 1a – The evaluator attempted to connect the TOE to a TLS server using a certificate with a valid certification

path. The evaluator observed the connection was successful.

Test 1b – The evaluator attempted to connect the TOE to a TLS server using a certificate with an invalid

certification path. The evaluator observed that the connection failed.

Test 1c – The evaluator returned to the valid certificate from Test 1a and managed the TOE’s trust store to remove

the trusted root so that the TOE could not validate the certification path. The evaluator attempted to connect the

TOE to the TLS server and observed the connection failed.

Test 2 – The evaluator tested this under ASPP14:FIA_X509_EXT.1.1-t3. Under the referenced test, the evaluator

attempted to connect the TOE to a TLS server using a revoked server certificate. The resulting connection was

rejected.

Test 3: The evaluator tested this under ASPP14:FIA_X509_EXT.1.1-t2. Under the referenced test, the evaluator

attempted to connect the TOE to a TLS server using an expired server certificate. The resulting connection was

rejected.

Test 4: The evaluator tested this under PKGTLS11:FCS_TLSC_EXT.1.2. Under these referenced tests, the evaluator

attempted to connect the TOE to a TLS server using a variety of configured identifiers and server certificates. The

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 36 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

evaluator found that all cases where the TLS server was using an invalid certificate identifier, the connection was

rejected.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.1.14 TLS CLIENT SUPPORT FOR SUPPORTED GROUPS EXTENSION

(PKGTLS11:FCS_TLSC_EXT.5)

2.1.14.1 PKGTLS11:FCS_TLSC_EXT.5.1

TSS Assurance Activities: The evaluator shall verify that TSS describes the Supported Groups Extension.

Section 6.1 of the ST states the TOE supports the ECDHE groups secp256r1, secp384r1, and secp521r1. This is

consistent with the claims for the same curves under PKGTLS11:FCS_TLSC_EXT.5.1 for supported group extension.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator shall also perform the following test:

Test 1: The evaluator shall configure a server to perform key exchange using each of the TOE's supported curves

and/or groups. The evaluator shall verify that the TOE successfully connects to the server.

The evaluator made a TLS connection using each of the claimed curves. The evaluator was able to capture each

key size or curve using a packet capture.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.2 USER DATA PROTECTION (FDP)

2.2.1 ENCRYPTION OF SENSITIVE APPLICATION DATA (ASPP14:FDP_DAR_EXT.1)

2.2.1.1 ASPP14:FDP_DAR_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 37 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall examine the TSS to ensure that it describes the sensitive

data processed by the application. The evaluator shall then ensure that the following activities cover all of the

sensitive data identified in the TSS. If not store any sensitive data is selected, the evaluator shall inspect the TSS to

ensure that it describes how sensitive data cannot be written to non-volatile memory. The evaluator shall also

ensure that this is consistent with the filesystem test below.

The TOE claims to not store any sensitive data to non-volatile memory. Section 6.2 of the ST also is consistent with

this claim as it describes how sensitive data cannot be written to non-volatile memory as it states the TOE does not

store any sensitive data and that sensitive data is processed by the external TNMS server.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: Evaluation activities (after the identification of the sensitive data) are to

be performed on all sensitive data listed that are not covered by FCS_STO_EXT.1. The evaluator shall inventory the

filesystem locations where the application may write data. The evaluator shall run the application and attempt to

store sensitive data. The evaluator shall then inspect those areas of the filesystem to note where data was stored

(if any), and determine whether it has been encrypted.

If 'leverage platform-provided functionality' is selected, the evaluation activities will be performed as stated in the

following requirements, which vary on a per-platform basis.

Platforms: Android....

The evaluator shall inspect the TSS and verify that it describes how files containing sensitive data are stored with

the MODE_PRIVATE flag set.

Platforms: Microsoft Windows....

The Windows platform currently does not provide data-at-rest encryption services which depend upon invocation

by application developers. The evaluator shall verify that the Operational User Guidance makes the need to

activate platform encryption, such as BitLocker or Encrypting File System (EFS), clear to the end user.

Platforms: Apple iOS....

The evaluator shall inspect the TSS and ensure that it describes how the application uses the Complete Protection,

Protected Unless Open, or Protected Until First User Authentication Data Protection Class for each data file stored

locally.

Platforms: Linux....

The Linux platform currently does not provide data-at-rest encryption services which depend upon invocation by

application developers. The evaluator shall verify that the Operational User Guidance makes the need to activate

platform encryption clear to the end user.

Platforms: Oracle Solaris....

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 38 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The Solaris platform currently does not provide data-at-rest encryption services which depend upon invocation by

application developers. The evaluator shall verify that the Operational User Guidance makes the need to activate

platform encryption clear to the end user.

Platforms: Apple macOS....

The macOS platform currently does not provide data-at-rest encryption services which depend upon invocation by

application developers. The evaluator shall verify that the Operational User Guidance makes the need to activate

platform encryption clear to the end user.

Not applicable, the TOE does not store any sensitive data to non-volatile memory and as a result the evaluation

activity applies to no files.

2.2.2 ACCESS TO PLATFORM RESOURCES (ASPP14:FDP_DEC_EXT.1)

2.2.2.1 ASPP14:FDP_DEC_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: The evaluator shall perform the platform-specific actions below and inspect user

documentation to determine the application's access to hardware resources. The evaluator shall ensure that this is

consistent with the selections indicated. The evaluator shall review documentation provided by the application

developer and for each resource which it accesses, identify the justification as to why access is required.

 Section 2.2 Other Hardware and Software resources of the AGD indicates that the “TNMS Client does not require

access to any sensitive information repositories or special hardware resources other than network connectivity

used to communicate with the TNMS Server or check for updates..”

Testing Assurance Activities: Platforms: Android....

The evaluator shall verify that each uses-permission entry in the AndroidManifest.xml file for access to a hardware

resource is reflected in the selection.

Platforms: Microsoft Windows....

For Windows Universal Applications the evaluator shall check the WMAppManifest.xml file for a list of required

hardware capabilities. The evaluator shall verify that the user is made aware of the required hardware capabilities

when the application is first installed. This includes permissions such as ID_CAP_ISV_CAMERA, ID_CAP_LOCATION,

ID_CAP_NETWORKING, ID_CAP_MICROPHONE, ID_CAP_PROXIMITY and so on. A complete list of Windows App

permissions can be found at:

http://msdn.microsoft.com/en-US/library/windows/apps/jj206936.aspx

For Windows Desktop Applications the evaluator shall identify in either the application software or its

documentation the list of the required hardware resources.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 39 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Platforms: Apple iOS....

The evaluator shall verify that either the application or the documentation provides a list of the hardware

resources it accesses.

Platforms: Linux....

The evaluator shall verify that either the application software or its documentation provides a list of the hardware

resources it accesses.

Platforms: Oracle Solaris....

The evaluator shall verify that either the application software or its documentation provides a list of the hardware

resources it accesses.

Platforms: Apple macOS....

The evaluator shall verify that either the application software or its documentation provides a list of the hardware

resources it accesses.

The TOE only claims access to network connectivity and does not make any claims for access to additional

hardware resources. The evaluator never saw any special requests for hardware resources during any of the

installation or operational screens for the TOE.

2.2.2.2 ASPP14:FDP_DEC_EXT.1.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: The evaluator shall perform the platform-specific actions below and inspect user

documentation to determine the application's access to sensitive information repositories. The evaluator shall

ensure that this is consistent with the selections indicated. The evaluator shall review documentation provided by

the application developer and for each sensitive information repository which it accesses, identify the justification

as to why access is required.

Section 2.2 Other Hardware and Software resources of the AGD indicates that the TNMS Client does not require

access to any sensitive information repositories or special hardware resources other than network connectivity

used to communicate with the TNMS Server or check for updates..

Testing Assurance Activities: Platforms: Android....

The evaluator shall verify that each uses-permission entry in the AndroidManifest.xml file for access to a sensitive

information repository is reflected in the selection.

Platforms: Microsoft Windows....

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 40 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

For Windows Universal Applications the evaluator shall check the WMAppManifest.xml file for a list of required

capabilities. The evaluator shall identify the required information repositories when the application is first

installed. This includes permissions such as ID_CAP_CONTACTS,ID_CAP_APPOINTMENTS,ID_CAP_MEDIALIB and so

on. A complete list of Windows App permissions can be found at:

http://msdn.microsoft.com/en-US/library/windows/apps/jj206936.aspx

For Windows Desktop Applications the evaluator shall identify in either the application software or its

documentation the list of sensitive information repositories it accesses.

Platforms: Apple iOS....

The evaluator shall verify that either the application software or its documentation provides a list of the sensitive

information repositories it accesses.

Platforms: Linux....

The evaluator shall verify that either the application software or its documentation provides a list of sensitive

information repositories it accesses.

Platforms: Oracle Solaris....

The evaluator shall verify that either the application software or its documentation provides a list of sensitive

information repositories it accesses.

Platforms: Apple macOS....

The evaluator shall verify that either the application software or its documentation provides a list of sensitive

information repositories it accesses.

The TOE does not make any claims for access to additional sensitive information repositories. The evaluator never

saw any special requests for sensitive data repositories during any of the installation or operational screens for the

TOE.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.2.3 NETWORK COMMUNICATIONS (ASPP14:FDP_NET_EXT.1)

2.2.3.1 ASPP14:FDP_NET_EXT.1.1

TSS Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 41 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall perform the following tests:

Test 1: The evaluator shall run the application. While the application is running, the evaluator shall sniff network

traffic ignoring all non-application associated traffic and verify that any network communications witnessed are

documented in the TSS or are user-initiated.

Test 2: The evaluator shall run the application. After the application initializes, the evaluator shall run network port

scans to verify that any ports opened by the application have been captured in the ST for the third selection and its

assignment. This includes connection-based protocols (e.g. TCP, DCCP) as well as connectionless protocols (e.g.

UDP).

Platforms: Android....

If 'no network communication' is selected, the evaluator shall ensure that the application's AndroidManifest.xml

file does not contain a <uses-permission> or <uses-permission-sdk-23> tag containing

android:name='android.permission.INTERNET'. In this case, it is not necessary to perform the above Tests 1 and 2,

as the platform will not allow the application to perform any network communication.

Test 1 – The evaluator captured traffic while the TOE was used to login to the external TNMS server, manage

server configurations, and log out. The evaluator analyzed the packet capture and found only the mentioned

network traffic from the TOE process.

Test 2 – The evaluator performed a port scan and verified that the TOE does not open any port for listening.

2.3 IDENTIFICATION AND AUTHENTICATION (FIA)

2.3.1 X.509 CERTIFICATE VALIDATION (ASPP14:FIA_X509_EXT.1)

2.3.1.1 ASPP14:FIA_X509_EXT.1.1

TSS Assurance Activities: The evaluator shall ensure the TSS describes where the check of validity of the

certificates takes place. The evaluator ensures the TSS also provides a description of the certificate path validation

algorithm.

Section 6.3 of the ST states the TOE performs certificate validity checking within its Bouncy Castle cryptographic

library.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 42 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Additionally, Section 6.3 describes the certificate path validation algorithm as follows:

The TOE examines each certificate in the path (starting with the peer’s certificate) and first checks for validity of that

certificate (e.g., has the certificate expired; or if not yet valid, whether the certificate contains the appropriate X.509

extensions [e.g., the CA flag in the basic constraints extension for a CA certificate, or that a server certificate contains

the Server Authentication purpose in the ExtendedKeyUsagefield]), then verifies each certificate in the chain

(applying the same rules as above, but also ensuring that the Issuer of each certificate matches the Subject in the

next rung “up” in the chain and that the chain ends in a self-signed certificate present in either the TOE’S trusted

anchor database or matches a specified Root CA), and finally the TOE performs revocation checking for all certificates

in the chain. The TOE supports CRL as specified for RFC 5280 Section 6.3 for RSA certificates and CRL as specified in

RFC 8603 for ECDSA certificates used in revocation checks under TLS connections.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The tests described must be performed in conjunction with the other certificate

services evaluation activities, including the functions in FIA_X509_EXT.2.1. The tests for the extendedKeyUsage

rules are performed in conjunction with the uses that require those rules. If the application supports chains of

length four or greater, the evaluator shall create a chain of at least four certificates: the node certificate to be

tested, two Intermediate CAs, and the self-signed Root CA. If the application supports a maximum trust depth of

two, then a chain with no Intermediate CA should instead be created.

Test 1: The evaluator shall demonstrate that validating a certificate without a valid certification path results in the

function failing, for each of the following reasons, in turn:

- by establishing a certificate path in which one of the issuing certificates is not a CA certificate,

- by omitting the basicConstraints field in one of the issuing certificates,

- by setting the basicConstraints field in an issuing certificate to have CA=False,

- by omitting the CA signing bit of the key usage field in an issuing certificate, and

- by setting the path length field of a valid CA field to a value strictly less than the certificate path.

The evaluator shall then establish a valid certificate path consisting of valid CA certificates, and demonstrate that

the function succeeds. The evaluator shall then remove trust in one of the CA certificates, and show that the

function fails.

Test 2: The evaluator shall demonstrate that validating an expired certificate results in the function failing.

Test 3: The evaluator shall test that the TOE can properly handle revoked certificates â€“ conditional on whether

CRL, OCSP, OCSP Stapling, or OCSP Multi-stapling is selected; if multiple methods are selected, then the following

tests shall be performed for each method:

The evaluator shall test revocation of the node certificate.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 43 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The evaluator shall also test revocation of an intermediate CA certificate (i.e. the intermediate CA certificate

should be revoked by the root CA), if intermediate CA certificates are supported. If OCSP stapling per RFC6066 is

the only supported revocation method, this test is omitted.

The evaluator shall ensure that a valid certificate is used, and that the validation function succeeds. The evaluator

then attempts the test with a certificate that has been revoked (for each method chosen in the selection) to

ensure when the certificate is no longer valid that the validation function fails.

Test 4: f any OCSP option is selected, the evaluator shall ensure the TSF has no other source of revocation

information available and configure the OCSP server or use a man-in-the-middle tool to present an OCSP response

signed by a certificate that does not have the OCSP signing purpose and which is the only source of revocation

status information advertised by the CA issuing the certificate being validated. The evaluator shall verify that

validation of the OCSP response fails and that the TOE treats the certificate being checked as invalid and rejects

the connection. If CRL is selected, the evaluator shall likewise configure the CA to be the only source of revocation

status information, and sign a CRL with a certificate that does not have the cRLsign key usage bit set, and . The

evaluator shall verify that validation of the CRL fails and that the TOE treats the certificate being checked as invalid

and rejects the connection.

Note: The intent of this test is to ensure a TSF does not trust invalid revocation status information. A TSF receiving

invalid revocation status information from the only advertised certificate status provider should treat the

certificate whose status is being checked as invalid. This should generally be treated differently from the case

where the TSF is not able to establish a connection to check revocation status information, but it is acceptable that

the TSF ignore any invalid information and attempt to find another source of revocation status (another advertised

provider, a locally configured provider, or cached information) and treat this situation as not having a connection

to a valid certificate status provider. (TD0669 applied)

Test 5: The evaluator shall modify any byte in the first eight bytes of the certificate and demonstrate that the

certificate fails to validate. (The certificate will fail to parse correctly.)

Test 6: The evaluator shall modify any byte in the last byte of the certificate and demonstrate that the certificate

fails to validate. (The signature on the certificate will not validate.)

Test 7: The evaluator shall modify any byte in the public key of the certificate and demonstrate that the certificate

fails to validate. (The signature on the certificate will not validate.)

Test 8: (Conditional on support for EC certificates as indicated in FCS_COP.1/Sig). The evaluator shall establish a

valid, trusted certificate chain consisting of an EC leaf certificate, an EC Intermediate CA certificate not designated

as a trust anchor, and an EC certificate designated as a trusted anchor, where the elliptic curve parameters are

specified as a named curve. The evaluator shall confirm that the TOE validates the certificate chain.

Test 9: (Conditional on support for EC certificates as indicated in FCS_COP.1/Sig). The evaluator shall replace the

intermediate certificate in the certificate chain for Test 8 with a modified certificate, where the modified

intermediate CA has a public key information field where the EC parameters uses an explicit format version of the

Elliptic Curve parameters in the public key information field of the intermediate CA certificate from Test 8, and the

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 44 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

modified Intermediate CA certificate is signed by the trusted EC root CA, but having no other changes. The

evaluator shall confirm the TOE treats the certificate as invalid.

Test 1 – The evaluator configured a server to use TLS with credential with a valid certification path. The evaluator

connected the TOE to the server and the connection was accepted. The evaluator tested the case where a trusted

CA needed to validate the server certificate was removed from the TOE’s trusted certificate store under the test

FCS_TLSC_EXT.1.3-t1-Part 3. In the referenced test, the evaluator found that the connection was refused. The

evaluator attempted to connect the TOE to a TLS server that was using a server certificate whose issuing CA lacked

the basicConstraints extension and the connection was refused. The evaluator attempted to connect the TOE to a

TLS server that was using a server certificate whose issuing CA had the basicConstraints field to state CA=False and

the connection was refused. The evaluator attempted to connect the TOE to a TLS server whose issuing CA was

using a server certificate that had an incorrect path length under basicConstraints extension and the connection

was refused. The evaluator attempted to connect to a TLS server that was using a server certificate whose issuing

CA omitted the CA keyCertSign bit under the key usage field and the connection was refused.

Test 2 – The evaluator attempted to connect the TOE to a TLS server with a valid, unexpired certificate and

demonstrate that the TOE could properly validate this certificate. Then the evaluator attempted to connect to a

TLS server using a leaf-node server certificate that was expired and found the connection was refused. The

evaluator then tried to connect to a TLS server using a server certificate that was issued by a CA that was expired

and found that this was also refused.

Test 3 – The evaluator configured the TOE to connect to a TLS server using certificates with accurate CRL

information. The evaluator attempted to connect to the server using a server certificate that was not revoked and

saw that this connection was accepted. The evaluator attempted to connect to a server using a revoked server

certificate and saw that this connection was rejected. The evaluator then attempted to connect to the server using

a server certificate that was issued by a revoked intermediate CA and saw that this connection was also rejected.

Test 4 – The evaluator configured the TOE to connect to a TLS server using certificates with accurate CRL

information. The evaluator then attempted to connect to the server using a server certificate that had its

revocation information signed by a CA that lacked the CRL Signing key usage and saw that this connection was

rejected. The evaluator then attempted to connect to the server using a server certificate that had its issuing CA’s

revocation information signed by a certificate that lacked the CRL Signing key usage and saw that this connection

was also rejected.

Test 5- The evaluator configured the TOE to use TLS. The evaluator modified a byte in the first eight bytes of the

client certificate. A handshake error was received.

Test 6- The evaluator configured the TOE to use TLS. The evaluator modified a byte in the last byte of the client

certificate. A decryption error message was received.

Test 7 - The evaluator configured the TOE to use TLS. The evaluator modified the public key of the client certificate.

An invalid signature error message was received.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 45 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Test 8 - The evaluator configured the TOE to use TLS. The evaluator attempted to connect to a TLS server with a

valid EC certificate chain where the elliptic curve parameters are specified as a named curve. The evaluator

observed that the TLS connection was successful.

Test 9 - The evaluator configured the TOE to use TLS. The evaluator attempted to connect to a TLS server with a

valid EC certificate chain where the elliptic curve parameters in the intermediate CA are specified as an explicit

curve. The evaluator observed that the TLS connection was rejected.

2.3.1.2 ASPP14:FIA_X509_EXT.1.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The tests described must be performed in conjunction with the other certificate

services evaluation activities, including the functions in FIA_X509_EXT.2.1. If the application supports chains of

length four or greater, the evaluator shall create a chain of at least four certificates: the node certificate to be

tested, two Intermediate CAs, and the self-signed Root CA. If the application supports a maximum trust depth of

two, then a chain with no Intermediate CA should instead be created.

Test 1: The evaluator shall ensure that the certificate of at least one of the CAs does not contain the

basicConstraints extension. The evaluator shall confirm that validation of the certificate path fails (i) as part of the

validation of the peer certificate belonging to this chain; and/or (ii) when attempting to add the CA certificate

without the basicConstraints extension to the TOE's trust store.

Test 2: The evaluator shall ensure that the certificate of at least one of the CAs in the chain has the CA flag in the

basicConstraints extension not set (or set to FALSE). The evaluator shall confirm that validation of the certificate

path fails (i) as part of the validation of the peer certificate belonging to this chain; and/or (ii) when attempting to

add the CA certificate with the CA flag not set (or set to FALSE) in the basicConstraints extension to the TOE's trust

store.

Test 1 – The evaluator tested this in conjunction with FIA_X509_EXT.1.1-t1. In that test, the evaluator attempted

to connect the TOE to a server using a certificate without a basicConstraints extension and found that the

validation of the certificate path fails as part of the validation of the peer certificate belonging to this chain.

Test 2 – The evaluator tested this in conjunction with FIA_X509_EXT.1.1-t1. In that test, the evaluator attempted

to connect the TOE to a server using a certificate with the CA flag set to false in the basicConstraints extension and

found that the validation of the certificate path fails as part of the validation of the peer certificate belonging to

this chain.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 46 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Component Testing Assurance Activities: None Defined

2.3.2 X.509 CERTIFICATE AUTHENTICATION (ASPP14:FIA_X509_EXT.2)

2.3.2.1 ASPP14:FIA_X509_EXT.2.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.3.2.2 ASPP14:FIA_X509_EXT.2.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall check the TSS to ensure that it describes how the TOE

chooses which certificates to use, and any necessary instructions in the administrative guidance for configuring the

operating environment so that the TOE can use the certificates. The evaluator shall examine the TSS to confirm

that it describes the behavior of the TOE when a connection cannot be established during the validity check of a

certificate used in establishing a trusted channel. The evaluator shall verify that any distinctions between trusted

channels are described. If the requirement that the administrator is able to specify the default action, then the

evaluator shall ensure that the operational guidance contains instructions on how this configuration action is

performed.

Section 6.3 of the ST states that the TOE validates the entire provided certificate chain and the TOE validates X.509

certificates through outbound TLS connections against the administrator configured trusted anchor database. The

AGD contains instructions followed by the evaluation team to configured the referenced trusted anchor database.

Additionally, Section 6.3 states that TLS server certificates that cannot be validated will not be accepted by the TOE

and the trusted channel will not be established.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall perform the following test for each trusted channel:

Test 1: The evaluator shall demonstrate that using a valid certificate that requires certificate validation checking to

be performed in at least some part by communicating with a non-TOE IT entity. The evaluator shall then

manipulate the environment so that the TOE is unable to verify the validity of the certificate, and observe that the

action selected in FIA_X509_EXT.2.2 is performed. If the selected action is administrator-configurable, then the

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 47 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

evaluator shall follow the operational guidance to determine that all supported administrator-configurable options

behave in their documented manner.

Test 2: The evaluator shall demonstrate that an invalid certificate that requires certificate validation checking to be

performed in at least some part by communicating with a non-TOE IT entity cannot be accepted.

Test 1 – The evaluator configured a client to use TLS with a client credential. The evaluator configured the CDP

information for the necessary certificates used in this test so that the TOE would be able to fetch the CRLs and

verify the client credential. The evaluator then attempted to connect to the TOE and showed that the connection

was accepted. The evaluator then removed the CDP information and flushed the CRL cache so that the TOE no

longer had access to the revocation information. The evaluator attempted to connect to the TOE again, this time

showing that the connection failed.

Test 2 – the evaluator referred to ASPP12:FIA_X509_EXT.1.1-t3 where the evaluator tested this exact test. In this

test, the evaluator tested that a certificate that was revoked by an external server who hosted a CRL from the

certificate’s issuing CA could not be accepted.

2.4 SECURITY MANAGEMENT (FMT)

2.4.1 SECURE BY DEFAULT CONFIGURATION (ASPP14:FMT_CFG_EXT.1)

2.4.1.1 ASPP14:FMT_CFG_EXT.1.1

TSS Assurance Activities: The evaluator shall check the TSS to determine if the application requires any type of

credentials and if the application installs with default credentials.

Section 6.4 of the TSS states the TOE requires no credential of its own. As a result, the TOE does not install with

default credentials.

The evaluation evidence makes reference to a username and password that belongs to an external TNMS server, so

Section 6.4 further clarifies this by stating the TOE accepts a username and password, and the TOE forwards these

to the TNMS server (through a TLS protected connection and after first hashing the user’s password with SHA-1).

This credential belongs to and is managed by the external server and is not claimed as a credential for the TOE under

this requirement.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: If the application uses any default credentials the evaluator shall run the following

tests.

Test 1: The evaluator shall install and run the application without generating or loading new credentials and verify

that only the minimal application functionality required to set new credentials is available.

Test 2: The evaluator shall attempt to clear all credentials and verify that only the minimal application functionality

required to set new credentials is available.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 48 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Test 3: The evaluator shall run the application, establish new credentials and verify that the original default

credentials no longer provide access to the application.

Test 1 – Not applicable, the TOE does not require any credentials of its own.

Test 2 – Not applicable, the TOE does not have any credentials.

Test 3 – Not applicable, the TOE does not have default credentials.

2.4.1.2 ASPP14:FMT_CFG_EXT.1.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator shall install and run the application. The evaluator shall inspect the

filesystem of the platform (to the extent possible) for any files created by the application and ensure that their

permissions are adequate to protect them. The method of doing so varies per platform.

Platforms: Android....

The evaluator shall run the command find -L . -perm /002 inside the application's data directories to ensure that all

files are not world-writable. The command should not print any files.

Platforms: Microsoft Windows....

The evaluator shall run the SysInternals tools, Process Monitor and Access Check (or tools of equivalent capability,

like icacls.exe) for Classic Desktop applications to verify that files written to disk during an application's installation

have the correct file permissions, such that a standard user cannot modify the application or its data files. For

Windows Universal Applications the evaluator shall consider the requirement met because of the AppContainer

sandbox.

Platforms: Apple iOS....

The evaluator shall determine whether the application leverages the appropriate Data Protection Class for each

data file stored locally.

Platforms: Linux....

The evaluator shall run the command find -L. -perm /002 inside the application's data directories to ensure that all

files are not world-writable. The command should not print any files.

Platforms: Oracle Solaris....

The evaluator shall run the command find . -perm -002 inside the application's data directories to ensure that all

files are not world-writable. The command should not print any files.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 49 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Platforms: Apple macOS....

The evaluator shall run the command find . -perm +002 inside the application's data directories to ensure that all

files are not world-writable. The command should not print any files.

The evaluator installed and ran the application. The evaluator then ran the Windows command to inspect the

filesystem for permissions created by the application and the command returned no files.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.4.2 SUPPORTED CONFIGURATION MECHANISM - PER TD0624

(ASPP14:FMT_MEC_EXT.1)

2.4.2.1 ASPP14:FMT_MEC_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall review the TSS to identify the application's configuration

options (e.g. settings) and determine whether these are stored and set using the mechanisms supported by the

platform or implemented by the application in accordance with the PP-Module for File Encryption. At a minimum

the TSS shall list settings related to any SFRs and any settings that are mandated in the operational guidance in

response to an SFR.

Conditional: If 'implement functionality to encrypt and store configuration options as defined by FDP_PRT_EXT.1 in

the PP-Module for File Encryption' is selected, the evaluator shall ensure that the TSS identifies those options, as

well as indicates where the encrypted representation of these options is stored.

Section 6.4 of the ST states the TOE makes use of its application storage area within the Windows filesystem to store

the configured root CA. This is consistent with the claim to invoke mechanisms recommended by the platform

vendor.

Implement functionality to encrypt and store configuration options is not claimed under this requirement.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: If 'invoke the mechanisms recommended by the platform vendor for

storing and setting configuration options' is chosen, the method of testing varies per platform as follows:

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 50 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Platforms: Android....

The evaluator shall run the application and make security-related changes to its configuration. The evaluator shall

check that at least one file exists at location /data/data/package/shared_prefs/ (for SharedPreferences) and/or

/data/data/package/files/datastore (for DataStore), where the package is the Java package of the application. For

SharedPreferences the evaluator shall examine the XML file to make sure it reflects the changes made to the

configuration to verify that the application used SharedPreferences and/or PreferenceActivity to store the

configuration data. For DataStore the evaluator shall use a protocol buffer analyzer to examine the file to make

sure it reflects the changes made to the configuration to verify that the application used DataStore to store the

configuration data.

Platforms: Microsoft Windows....

The evaluator shall determine and verify that Windows Universal Applications use either the Windows.Storage

namespace, Windows.UI.ApplicationSettings namespace or the IsolatedStorageSettings namespace for storing

application specific settings. For .NET applications, the evaluator shall determine and verify that the application

uses one of the locations listed in https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/ for

storing application specific settings. For Classic Desktop applications, the evaluator shall run the application while

monitoring it with the SysInternals tool ProcMon and make changes to its configuration. The evaluator shall verify

that ProcMon logs show corresponding changes to the Windows Registry or C:\ProgramData\ directory.

Platforms: Apple iOS....

The evaluator shall verify that the app uses the user defaults system or key-value store for storing all settings.

Platforms: Linux....

The evaluator shall run the application while monitoring it with the utility strace. The evaluator shall make

security-related changes to its configuration. The evaluator shall verify that strace logs corresponding changes to

configuration files that reside in /etc (for system-specific configuration), in the user's home directory (for user-

specific configuration), or /var/lib/ (for configurations controlled by UI and not intended to be directly modified by

an administrator).

Platforms: Oracle Solaris....

The evaluator shall run the application while monitoring it with the utility dtrace. The evaluator shall make

security-related changes to its configuration. The evaluator shall verify that dtrace logs corresponding changes to

configuration files that reside in /etc (for system-specific configuration) or in the user's home directory (for user-

specific configuration).

Platforms: Apple macOS....

The evaluator shall verify that the application stores and retrieves settings using the NSUserDefaults class.

If ' implement functionality to encrypt and store configuration options as defined by FDP_PRT_EXT.1 in the PP-

Module for File Encryption' is selected, for all configuration options listed in the TSS as being stored and protected

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 51 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

using encryption, the evaluator shall examine the contents of the configuration option storage (identified in the

TSS) to determine that the options have been encrypted.

The TOE invokes platform mechanisms for storing credentials. The evaluator ran ProcMon while configuring the

trust store used for TLS authentication. The ProcMon scan confirmed that the public certificate was housed in the

truststore which was configured according to the AGD to be under C:\ProgramData\.

2.4.3 SPECIFICATION OF MANAGEMENT FUNCTIONS (ASPP14:FMT_SMF.1)

2.4.3.1 ASPP14:FMT_SMF.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: The evaluator shall verify that every management function mandated

by the PP is described in the operational guidance and that the description contains the information required to

perform the management duties associated with the management function.

The TOE claims the following management functions and the evaluator ensured that the AGD contained references

to the information required to perform the function

Specify the TNMS Server (by FQDN or IP address):

Section 3.9 TNMS Login contains the information to connect to the external TNMS server. More specifically, the

section identifies that the TNMS server address can be specified as the <server IP address> or <FQDN> format.

Manage trusted root CA certificates:

Section 3.5 Managing Root Certificates contains information about how to use the JRE keytool command to

manage the provided trusted root store. This section also includes subsections to directly address how new

certificates are installed, current trusted certificates can be queried, and existing trusted certificates can be

removed.

Connect with to the TNMS Server:

Section 3.9 TNMS Login contains the information to connect to the external TNMS server and Section 3.10 TNMS

Logout contains information to terminate the connection. The TOE is a UI client for the external TNMS server, so

additional actions performed via the connection are not performed by the TOE, but rather the external TNMS

server, and as such are not included under this evaluation.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 52 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Component Testing Assurance Activities: The evaluator shall test the application's ability to provide the

management functions by configuring the application and testing each option selected from above. The evaluator

is expected to test these functions in all the ways in which the ST and guidance documentation state the

configuration can be managed.

The TOE claims three management functions under this SFR.

Part 1 Specify the TNMS server (by FQDN or IP address) – The evaluator attempted to log on to an external TNMS

server using a FQDN and an IP address and showed both connections were successful. Further testing of this same

mechanism against ensuring that the configured identifier is used is performed under FCS_TLSC_EXT.1.2.

Part 2 Manage trusted root CA certificates – The evaluator attempted to connect to an external TNMS server using

a server certificate with a non-configured CA and showed that the TOE could not connect. The evaluator then

configured the same CA and repeated the connection and showed the TOE could now long in, demonstrating the

configuration was a success. The evaluator then removed the certificate and showed the log in once again failed.

Throughout the process, the evaluator queried the truststore and found the reported certificates matched the

expected TLS behavior

Part 3 Connect with to the TNMS server – Testing was down in conjunction with the previous two management

functions as the evaluator demonstrated the TOE could connect with an external TNMS server when specified with

matching identifiers and trusted roots.

2.5 PRIVACY (FPR)

2.5.1 USER CONSENT FOR TRANSMISSION OF PERSONALLY IDENTIFIABLE

(ASPP14:FPR_ANO_EXT.1)

2.5.1.1 ASPP14:FPR_ANO_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall inspect the TSS documentation to identify functionality

in the application where PII can be transmitted.

Section 6.5 states the TOE does not transmit any PII.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: If require user approval before executing is selected, the evaluator shall

run the application and exercise the functionality responsibly for transmitting PII and verify that user approval is

required before transmission of the PII.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 53 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Not applicable, the TOE does not transmit PII.

2.6 PROTECTION OF THE TSF (FPT)

2.6.1 ANTI-EXPLOITATION CAPABILITIES (ASPP14:FPT_AEX_EXT.1)

2.6.1.1 ASPP14:FPT_AEX_EXT.1.1

TSS Assurance Activities: The evaluator shall ensure that the TSS describes the compiler flags used to enable ASLR

when the application is compiled.

The TOE is primarily a Java application that does not rely on compilation flags for most runtime protections

including ASLR.

For native executables included with the TOE, section 6.6 of the ST states the corresponding compilation flags are

used including /DYNAMICBASE, /GS, and /NXCOMPAT.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator shall perform either a static or dynamic analysis to determine that no

memory mappings are placed at an explicit and consistent address. The method of doing so varies per platform.

For those platforms requiring the same application running on two different systems, the evaluator may

alternatively use the same device. After collecting the first instance of mappings, the evaluator must uninstall the

application, reboot the device, and reinstall the application to collect the second instance of mappings.

Platforms: Android....

The evaluator shall run the same application on two different Android systems. Both devices do not need to be

evaluated, as the second device is acting only as a tool. Connect via ADB and inspect /proc/PID/maps. Ensure the

two different instances share no memory mappings made by the application at the same location.

Platforms: Microsoft Windows....

The evaluator shall run the same application on two different Windows systems and run a tool that will list all

memory mapped addresses for the application. The evaluator shall then verify the two different instances share no

mapping locations. The Microsoft SysInternals tool, VMMap, could be used to view memory addresses of a running

application. The evaluator shall use a tool such as Microsoft's BinScope Binary Analyzer to confirm that the

application has ASLR enabled.

Platforms: Apple iOS....

The evaluator shall perform a static analysis to search for any mmap calls (or API calls that call mmap), and ensure

that no arguments are provided that request a mapping at a fixed address.

Platforms: Linux....

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 54 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The evaluator shall run the same application on two different Linux systems. The evaluator shall then compare

their memory maps using pmap -x PID to ensure the two different instances share no mapping locations.

Platforms: Oracle Solaris....

The evaluator shall run the same application on two different Solaris systems. The evaluator shall then compare

their memory maps using pmap -x PID to ensure the two different instances share no mapping locations.

Platforms: Apple macOS....

The evaluator shall run the same application on two different Mac systems. The evaluator shall then compare their

memory maps using vmmap PID to ensure the two different instances share no mapping locations.

The TOE is a java application that does not rely on the same ASLR protections to produce randomized memory

addresses, however the evaluator still ran the Windows requirements above to show the platform-level

protections were enabled. The evaluator ran the same application on two different Windows instances and

gathered memory maps using the Microsoft Sysinternals tool VMMap. The evaluator compared the two memory

maps and could not find any instance of an explicit memory address allocated to the same address. The evaluator

also used Microsoft’s BinScope Binary Analyzer to search through all of the binaries on the TOE and found that no

binaries failed the DBCheck for /DYNAMICBASE, showing that ASLR was enabled. The evaluator finally ran the TOE

and used Process Hacker to analyze the mitigation policies the application loads by default and observed platform-

level ASLR was enabled.

2.6.1.2 ASPP14:FPT_AEX_EXT.1.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator shall verify that no memory mapping requests are made with write and

execute permissions. The method of doing so varies per platform.

Platforms: Android....

The evaluator shall perform static analysis on the application to verify that

 o mmap is never invoked with both the PROT_WRITE and PROT_EXEC permissions, and

 o mprotect is never invoked.

Platforms: Microsoft Windows....

The evaluator shall use a tool such as Microsoft's BinScope Binary Analyzer to confirm that the application passes

the NXCheck. The evaluator may also ensure that the /NXCOMPAT flag was used during compilation to verify that

DEP protections are enabled for the application.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 55 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Platforms: Apple iOS....

The evaluator shall perform static analysis on the application to verify that mprotect is never invoked with the

PROT_EXEC permission.

Platforms: Linux....

The evaluator shall perform static analysis on the application to verify that both

 o mmap is never be invoked with both the PROT_WRITE and PROT_EXEC permissions, and

 o mprotect is never invoked with the PROT_EXEC permission.

Platforms: Oracle Solaris....

The evaluator shall perform static analysis on the application to verify that both

 o mmap is never be invoked with both the PROT_WRITE and PROT_EXEC permissions, and

 o mprotect is never invoked with the PROT_EXEC permission.

Platforms: Apple macOS....

The evaluator shall perform static analysis on the application to verify that mprotect is never invoked with the

PROT_EXEC permission.

The TOE is primarily a Java application that does not rely on any data execution protection being enabled as Java

manages its own memory and does not have a method of opting out of its runtime exception checking.

For native executables bundled with this app, this was tested alongside ASPP14:FPT_AEX_EXT.1.1-t1 where the

evaluator obtained a list of all TOE executables that could be processed with BinScope and ran them through a

variety of different checks. During this test, the evaluator found that the /NXCOMPAT flag was used during

compilation.

2.6.1.3 ASPP14:FPT_AEX_EXT.1.3

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator shall configure the platform in the ascribed manner and carry out one

of the prescribed tests:

Platforms: Android....

Applications running on Android cannot disable Android security features, therefore this requirement is met and

no evaluation activity is required.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 56 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Platforms: Microsoft Windows....

If the OS platform supports Windows Defender Exploit Guard (Windows 10 version 1709 or later), then the

evaluator shall ensure that the application can run successfully with Windows Defender Exploit Guard Exploit

Protection configured with the following minimum mitigations enabled; Control Flow Guard (CFG), Randomize

memory allocations (Bottom-Up ASLR), Export address filtering (EAF), Import address filtering (IAF), and Data

Execution Prevention (DEP). The following link describes how to enable Exploit Protection,

https://docs.microsoft.com/en-us/windows/security/threatprotection/windows-defender-exploit-

guard/customize-exploit-protection.

If the OS platform supports the Enhanced Mitigation Experience Toolkit (EMET) which can be installed on Windows

10 version 1703 and earlier, then the evaluator shall ensure that the application can run successfully with EMET

configured with the following minimum mitigations enabled; Memory Protection Check, Randomize memory

allocations (Bottom-Up ASLR), Export address filtering (EAF), and Data Execution Prevention (DEP).

Platforms: Apple iOS....

Applications running on iOS cannot disable security features, therefore this requirement is met and no evaluation

activity is required.

Platforms: Linux....

The evaluator shall ensure that the application can successfully run on a system with either SELinux or AppArmor

enabled and in enforce mode.

Platforms: Oracle Solaris....

The evaluator shall ensure that the application can run with Solaris Trusted Extensions enabled and enforcing.

Platforms: Apple macOS....

The evaluator shall ensure that the application can successfully run on macOS without disabling any security

features.

Windows 10 no longer supports Windows Enhanced Mitigation Experience Toolkit in favor of Windows Defender.

The evaluator ran the TOE on a platform that had Windows Defender Exploit Guard configured and enabled with

Control Flow Guard, Randomize Memory allocations, Export address filtering, Import address filtering, and Data

Execution Prevention and found no issues with TOE functionality.

2.6.1.4 ASPP14:FPT_AEX_EXT.1.4

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 57 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Testing Assurance Activities: The evaluator shall run the application and determine where it writes its files. For

files where the user does not choose the destination, the evaluator shall check whether the destination directory

contains executable files. This varies per platform:

Platforms: Android....

The evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written.

The evaluator shall ensure that there are no executable files stored under /data/data/package/ where package is

the Java package of the application.

Platforms: Microsoft Windows....

For Windows Universal Applications the evaluator shall consider the requirement met because the platform forces

applications to write all data within the application working directory (sandbox). For Windows Desktop

Applications the evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files

are written. The evaluator shall ensure that there are no executable files stored in the same directories to which

the application wrote user-modifiable files.

Platforms: Apple iOS....

The evaluator shall consider the requirement met because the platform forces applications to write all data within

the application working directory (sandbox).

Platforms: Linux....

The evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written.

The evaluator shall ensure that there are no executable files stored in the same directories to which the

application wrote user-modifiable files.

Platforms: Oracle Solaris....

The evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written.

The evaluator shall ensure that there are no executable files stored in the same directories to which the

application wrote user-modifiable files.

Platforms: Apple macOS....

The evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written.

The evaluator shall ensure that there are no executable files stored in the same directories to which the

application wrote user-modifiable files.

The evaluator used the Windows SysInternals tool AccessCheck with the ‘-w users’ flag set to search through the

directories used by the application, including the directories which housed executables, searching for user-

writeable files. The evaluator found no user-writeable files in any of the directories.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 58 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

2.6.1.5 ASPP14:FPT_AEX_EXT.1.5

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator will inspect every native executable included in the TOE to ensure that

stack-based buffer overflow protection is present.

Platforms: Microsoft Windows....

Applications that run as Managed Code in the .NET Framework do not require these stack protections. Applications

developed in Object Pascal using the Delphi IDE compiled with RangeChecking enabled comply with this element.

For other code, the evaluator shall review the TSS and verify that the /GS flag was used during compilation. The

evaluator shall run a tool like, BinScope, that can verify the correct usage of /GS.

For PE , the evaluator will disassemble each and ensure the following sequence appears:

 mov rcx, QWORD PTR [rsp+(...)]

 xor rcx, (...)

 call (...)

For ELF executables, the evaluator will ensure that each contains references to the symbol _stack_chk_fail.

Tools such as Canary Detector may help automate these activities.

The evaluator ensured that section 6.6 of the ST specified that the correct /GS flag was used during compilation.

The evaluator then surveyed the directories used by the TOE and found a series of PE native executables. The

evaluator copied these to a Linux system in order to run the recommended Canary Detector tool and found that all

of the reported files were found that all of them were compiled with the applicable sequences for stack canaries.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.6.2 USE OF SUPPORTED SERVICES AND APIS (ASPP14:FPT_API_EXT.1)

2.6.2.1 ASPP14:FPT_API_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 59 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: The evaluator shall verify that the TSS lists the platform APIs used in the

application.

Section 6.6 of the ST contains a list of various APIs used in the TOE application.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall then compare the list with the supported APIs

(available through e.g. developer accounts, platform developer groups) and ensure that all APIs listed in the TSS

are supported.

The evaluator pulled this of supported APIs used by the TOE from the ST. The evaluator compared the list with

online documentation for the Open Java Development Kit (OpenJDK) and found references to all of the included

APIs.

2.6.3 SOFTWARE IDENTIFICATION AND VERSIONS (ASPP14:FPT_IDV_EXT.1)

2.6.3.1 ASPP14:FPT_IDV_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: If 'other version information' is selected the evaluator shall verify that the

TSS contains an explanation of the versioning methodology.

Section 6.6 of the TSS states that the TOE is versioned with a major and minor version number, as well as a build

number that is incremented with every update to the TOE.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall install the application, then check for the / existence

of version information. If SWID tags is selected the evaluator shall check for a .swidtag file. The evaluator shall

open the file and verify that is contains at least a SoftwareIdentity element and an Entity element.

This is tested in conjunction with FPT_TUD_EXT.1-t1 where the evaluator checked the current version as well as for

any available updates. During this test, the evaluator observed the version of the TOE.

2.6.4 USE OF THIRD PARTY LIBRARIES (ASPP14:FPT_LIB_EXT.1)

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 60 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

2.6.4.1 ASPP14:FPT_LIB_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall install the application and survey its installation

directory for dynamic libraries. The evaluator shall verify that libraries found to be packaged with or employed by

the application are limited to those in the assignment.

The evaluator inventories the location of where the application was installed for files with extensions that matched

dynamic libraries including .so, .a, .dll, .la, .jar, and .java. The resulting files were then individually identified to

their corresponding library in the ST and ensured that no additional libraries were included.

2.6.5 INTEGRITY FOR INSTALLATION AND UPDATE (ASPP14:FPT_TUD_EXT.1)

2.6.5.1 ASPP14:FPT_TUD_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: The evaluator shall check to ensure the guidance includes a description of how

updates are performed.

Section 3.8 Updating TNMS Client of the AGD contains details of how updates should be performed.

Testing Assurance Activities: The evaluator shall check for an update using procedures described in either the

application documentation or the platform documentation and verify that the application does not issue an error.

If it is updated or if it reports that no update is available this requirement is considered to be met.

The evaluator followed the procedures in section 3.6 the AGD to check for an update. The update script reported

back the current version, the latest version, and whether the client was considered up to date. Since the client was

up to date and no error was issued, this requirement was considered to be met.

2.6.5.2 ASPP14:FPT_TUD_EXT.1.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: The evaluator shall verify guidance includes a description of how to query the

current version of the application.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 61 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Section 3.6 Checking the Installed Version contains information about how the end-user can check if there are any

updates available. The same procedure for checking for updates also will report back the current version of the

product and if it is up to date.

Testing Assurance Activities: The evaluator shall query the application for the current version of the software

according to the operational user guidance. The evaluator shall then verify that the current version matches that of

the documented and installed version.

The evaluator tested this in conjunction with FPT_TUD_EXT.1.1-t1. The evaluator verified the installed and

documented versions are the same.

2.6.5.3 ASPP14:FPT_TUD_EXT.1.3

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: The evaluator shall verify that the application's executable files are not changed by

the application.

Platforms: Apple iOS: The evaluator shall consider the requirement met because the platform forces applications

to write all data within the application working directory (sandbox).

For all other platforms, the evaluator shall perform the following test:

Test 1: The evaluator shall install the application and then locate all of its executable files. The evaluator shall then,

for each file, save off either a hash of the file or a copy of the file itself. The evaluator shall then run the application

and exercise all features of the application as described in the ST. The evaluator shall then compare each

executable file with the either the saved hash or the saved copy of the files. The evaluator shall verify that these

are identical.

The evaluator installed the application and recorded the timestamps and MD5 hash of all the executables bundled

with the TOE. The evaluator then ran the application and ensured functionality. The evaluator then compared the

current executable attributes with the previous record and found that they were the same

2.6.5.4 ASPP14:FPT_TUD_EXT.1.4

TSS Assurance Activities: The evaluator shall verify that the TSS identifies how updates to the application are

signed by an authorized source. The definition of an authorized source must be contained in the TSS. The evaluator

shall also ensure that the TSS (or the operational guidance) describes how candidate updates are obtained.

Section 6.6 of the ST contains information regarding TOE updates. As stated in this section, “The vendor packages

updates to the TOE in an EXE format (as opposed to being bundled with the Windows platform itself) and relies

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 62 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

upon the Windows 10 operating system to verify the installation package’s signature before installing. Updates

are signed by Infinera’s Window developer key and display under the Windows platform with the Name of Signer

as www.infinera.com.”

The same section also identifies the following for how candidate updates are obtained: “Updates are obtained

through Infinera’s Customer Service Portal (https://support.infinera.com/) and are installed using the same process

as the initial installations.”

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

2.6.5.5 ASPP14:FPT_TUD_EXT.1.5

TSS Assurance Activities: The evaluator shall verify that the TSS identifies how the application is distributed.

Section 6.6 of the ST states the vendor packages updates to the TOE in an EXE installer format which details that

format and source of application updates. Updates are in the same format as initial initializations as updates are

processed through an uninstall and reinstall of the TOE application.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: If 'with the platform' is selected the evaluated shall perform a clean installation or

factory reset to confirm that TOE software is included as part of the platform OS. If 'as an additional package' is

selected the evaluator shall perform the tests in FPT_TUD_EXT.2.

The TOE claims ‘as an additional package’ and therefore FPT_TUD_EXT.2 is included and no additional testing

activity is performed.

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.6.6 INTEGRITY FOR INSTALLATION AND UPDATE - PER TD0664

(ASPP14:FPT_TUD_EXT.2)

2.6.6.1 ASPP14:FPT_TUD_EXT.2.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

http://www.infinera.com/
https://support.infinera.com/

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 63 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Testing Assurance Activities: The evaluator shall verify that application updates are distributed in the format

supported by the platform. This varies per platform:

Platforms: Android....

The evaluator shall ensure that the application is packaged in the Android application package (APK) format.

Platforms: Microsoft Windows....

The evaluator shall ensure that the application is packaged in the standard Windows Installer (.MSI) format, the

Windows Application Software (.EXE) format signed using the Microsoft Authenticode process, or the Windows

Universal Application package (.APPX) format. See

https://msdn.microsoft.com/enus/library/ms537364(v=vs.85).aspx for details regarding Authenticode signing.

Platforms: Apple iOS....

The evaluator shall ensure that the application is packaged in the IPA format.

Platforms: Linux....

The evaluator shall ensure that the application is packaged in the format of the package management

infrastructure of the chosen distribution. For example, applications running on Red Hat and Red Hat derivatives

shall be packaged in RPM format. Applications running on Debian and Debian derivatives shall be packaged in DEB

format.

Platforms: Oracle Solaris....

The evaluator shall ensure that the application is packaged in the PKG format.

Platforms: Apple macOS....

The evaluator shall ensure that application is packaged in the DMG format, the PKG format, or the MPKG format.

The TOE was provided to the evaluator in the form of an .EXE executable file for all of testing. The evaluator

verified the signature by using the platform to view the signature details.

2.6.6.2 ASPP14:FPT_TUD_EXT.2.2

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: Platforms: Android....

The evaluator shall consider the requirement met because the platform forces applications to write all data within

the application working directory (sandbox).

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 64 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Platforms: Apple iOS....

The evaluator shall consider the requirement met because the platform forces applications to write all data within

the application working directory (sandbox).

All Other Platforms...

The evaluator shall record the path of every file on the entire filesystem prior to installation of the application, and

then install and run the application. Afterwards, the evaluator shall then uninstall the application, and compare the

resulting filesystem to the initial record to verify that no files, other than configuration, output, and audit/log files,

have been added to the filesystem.

The evaluator recorded every file on the filesystem prior to the installation of the application, and then installed

and ran the application. The evaluator then followed AGD guidance to uninstall the TOE and compared the

resulting filesystem to the initial record. The only differences in the file scans were related to things not

attributable to the TOE or intentionally left behind as it was considered configuration files which are allowed per

this testing requirement.

2.6.6.3 ASPP14:FPT_TUD_EXT.2.3

TSS Assurance Activities: The evaluator shall verify that the TSS identifies how the application installation package

is signed by an authorized source. The definition of an authorized source must be contained in the TSS.

Section 6.6 of the ST contains the following about how the TOE updates are signed by an authorized source: The

vendor packages updates to the TOE in an EXE installer format (as opposed to being bundled with the Windows

platform itself) and relies upon the Windows 10 operating system to verify the installation package’s signature

before installing. Updates are signed by Infinera’s Window developer key and display under the Windows platform

with the Name of Signer as www.infinera.com. Updates are in the same format as initial initializations as updates

are processed through an uninstall and reinstall of the TOE application.

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: None Defined

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: None Defined

2.7 TRUSTED PATH/CHANNELS (FTP)

2.7.1 PROTECTION OF DATA IN TRANSIT - PER TD0655 (ASPP14:FTP_DIT_EXT.1)

http://www.infinera.com/

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 65 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

2.7.1.1 ASPP14:FTP_DIT_EXT.1.1

TSS Assurance Activities: None Defined

Guidance Assurance Activities: None Defined

Testing Assurance Activities: None Defined

Component TSS Assurance Activities: For platform-provided functionality, the evaluator shall verify the TSS

contains the calls to the platform that TOE is leveraging to invoke the functionality.

Not applicable, the TOE does not invoke platform-provided functionality.

Component Guidance Assurance Activities: None Defined

Component Testing Assurance Activities: The evaluator shall perform the following tests.

Test 1: The evaluator shall exercise the application (attempting to transmit data; for example by connecting to

remote systems or websites) while capturing packets from the application. The evaluator shall verify from the

packet capture that the traffic is encrypted with HTTPS, TLS, DTLS, SSH, or IPsec in accordance with the selection in

the ST.

Test 2: The evaluator shall exercise the application (attempting to transmit data; for example by connecting to

remote systems or websites) while capturing packets from the application. The evaluator shall review the packet

capture and verify that no sensitive data is transmitted in the clear.

Test 3: The evaluator shall inspect the TSS to determine if user credentials are transmitted. If credentials are

transmitted the evaluator shall set the credential to a known value. The evaluator shall capture packets from the

application while causing credentials to be transmitted as described in the TSS. The evaluator shall perform a string

search of the captured network packets and verify that the plaintext credential previously set by the evaluator is

not found.

Platforms: Android....

If 'not transmit any data' is selected, the evaluator shall ensure that the application's AndroidManifest.xml file

does not contain a uses-permission or uses-permission-sdk-23 tag containing

android:name='android.permission.INTERNET'. In this case, it is not necessary to perform the above Tests 1, 2, or

3, as the platform will not allow the application to perform any network communication.

Platforms: Apple iOS....

If 'encrypt all transmitted data' is selected, the evaluator shall ensure that the application's Info.plist file does not

contain the NSAllowsArbitraryLoads or NSExceptionAllowsInsecureHTTPLoads keys, as these keys disable iOS's

Application Transport Security feature.

Test 1 – The evaluator reanalyzed the packet capture from FDP_NET_EXT.1-t1. The TOE claims to encrypt all

sensitive data. All data transmitted by the TOE is either encrypted with TLS (for communicating with the external

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 66 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

TNMS server) or is not considered sensitive data (as is the case with version information to the vendor’s public

versioning server). The evaluator did not observe any undocumented traffic form the TOE.

Test 2 – The evaluator reanalyzed the packet capture from FDP_NET_EXT.1-t1. The evaluator attempted to search

for the credentials used by the external TNMS server in plaintext form and could not find them. The evaluator

found no other sensitive data in packet capture

Test 3 – The TOE does not have any credentials of its own, however the evaluator tested the TNMS server’s

credentials in Test 2. The evaluator found no evidence of any credentials in the network traffic.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 67 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

3. PROTECTION PROFILE SAR ASSURANCE ACTIVITIES

The following sections address assurance activities specifically defined in the ASPP14/PKGTLS11 that correspond

with Security Assurance Requirements.

3.1 DEVELOPMENT (ADV)

3.1.1 BASIC FUNCTIONAL SPECIFICATION (ADV_FSP.1)

Assurance Activities: There are no specific assurance activities associated with these SARs, except ensuring the

information is provided. The functional specification documentation is provided to support the evaluation activities

described in Section 5.1, and other activities described for AGD, ATE, and AVA SARs. The requirements on the

content of the functional specification information is implicitly assessed by virtue of the other assurance activities

being performed; if the evaluator is unable to perform an activity because there is insufficient interface

information, then an adequate functional specification has not been provided.

The assurance activities from section 5.1 of ASPP14 have been performed and the analysis of the evaluator is

documented in the previous sections of this document.

3.2 GUIDANCE DOCUMENTS (AGD)

3.2.1 OPERATIONAL USER GUIDANCE (AGD_OPE.1)

Assurance Activities: Some of the contents of the operational guidance will be verified by the assurance activities

in Section 5.1 and evaluation of the TOE according to the [CEM]. The following additional information is also

required. If cryptographic functions are provided by the TOE, the operational guidance shall contain instructions

for configuring the cryptographic engine associated with the evaluated configuration of the TOE. It shall provide a

warning to the administrator that use of other cryptographic engines was not evaluated nor tested during the CC

evaluation of the TOE. The documentation must describe the process for verifying updates to the TOE by verifying

a digital signature - this may be done by the TOE or the underlying platform. The evaluator shall verify that this

process includes the following steps: Instructions for obtaining the update itself. This should include instructions

for making the update accessible to the TOE (e.g., placement in a specific directory). Instructions for initiating the

update process, as well as discerning whether the process was successful or unsuccessful. This includes generation

of the hash/digital signature. The TOE will likely contain security functionality that does not fall in the scope of

evaluation under this PP. The operational guidance shall make it clear to an administrator which security

functionality is covered by the evaluation activities.

Section 3.4 Enabling FIPS mode of the AGD indicates that the TOE installation requires setting up the cryptographic

library into FIPS mode in order to be in compliance with the Common Criteria evaluated configuration.

Additionally, this section also states that “the use of any other cryptographic engines, or configurations other than

what is described in this section was not evaluated nor tested during the Common Criteria Evaluation of TNMS

Client

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 68 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

Section 3.8 Updating TNMS Client contains all required information including where to obtain new updates,

instructions to update the TOE, verifying signatures, and determining if it was successful. Updates are obtained

from Infinera’s Customer Service portal. This section states that updates are installed in the same manner as the

initial installation which is described in section 3.2 TNMS Client Installation. In that referenced section, any

necessary instructions for making the installation accessible to the platform are included. Similarly, the success of

the update can be checked in the same manner as the initial update, by “run[ning] the client and connect[ing] and

login to a TNMS server as described in the next sections [Section 3.9 TNMS Login]” The signature is verified by the

Windows platform and the end user can ensure that the “Name of signer” on the platform signature matches

“www.infinera.com”

The TOE does not contain any obvious functionality that is not included under the scope of this evaluation aside

from any mention of the external TNMS server. Section 1 Introduction states “the full TNMS system consists of a

TNMS server and a TNMS client. This guidance is provided as a supplement to the TNMS Customer Documentation

provided with every TNMS installation and describes how to install and configure the TNMS Client Component as

the evaluated configuration compliant with the Common Criteria for Information Technology Security Evaluation

version 3.1.” As detailed, this document and evaluation only cover the TNMS Client as the TNMS server is external

to the TOE and a product covered in a separate on-going evaluation.

3.2.2 PREPARATIVE PROCEDURES (AGD_PRE.1)

Assurance Activities: As indicated in the introduction above, there are significant expectations with respect to the

documentation - especially when configuring the operational environment to support TOE functional

requirements. The evaluator shall check to ensure that the guidance provided for the TOE adequately addresses all

platforms claimed for the TOE in the ST.

The ST claims that TOE is capable of running on a Microsoft Windows 10 (64-bit) platform with an Amazon Corretto

JDK/JRE version 11.0.6 and Oracle Java JRE 8u201. The AGD is in agreement with this claim as the list of supported

OS’s listed in Section 2.1 Supported Operating Systems and the list of software prerequisites in Section 3.1 Software

Pre-Requisites identify that the TOE runs on Windows 10 (64 bit) with Amazon Corretto JDK 11.0.6.10.1 and Oracle

Java JRE 8u201.

3.3 LIFE-CYCLE SUPPORT (ALC)

3.3.1 LABELLING OF THE TOE (ALC_CMC.1)

Assurance Activities: The evaluator shall check the ST to ensure that it contains an identifier (such as a product

name/version number) that specifically identifies the version that meets the requirements of the ST. Further, the

evaluator shall check the AGD guidance and TOE samples received for testing to ensure that the version number is

consistent with that in the ST. If the vendor maintains a web site advertising the TOE, the evaluator shall examine

the information on the web site to ensure that the information in the ST is sufficient to distinguish the product.

The title of the AGD document specifies a specific version of the TNMS Client and the evaluator ensure that was

consistent with the samples received during testing and the version contained in the ST.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 69 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

3.3.2 TOE CM COVERAGE (ALC_CMS.1)

Assurance Activities: The 'evaluation evidence required by the SARs' in this PP is limited to the information in the

ST coupled with the guidance provided to administrators and users under the AGD requirements. By ensuring that

the TOE is specifically identified and that this identification is consistent in the ST and in the AGD guidance (as done

in the assurance activity for ALC_CMC.1), the evaluator implicitly confirms the information required by this

component. Life-cycle support is targeted aspects of the developer's life-cycle and instructions to providers of

applications for the developer's devices, rather than an in-depth examination of the TSF manufacturer's

development and configuration management process. This is not meant to diminish the critical role that a

developer's practices play in contributing to the overall trustworthiness of a product; rather, it's a reflection on the

information to be made available for evaluation.

The evaluator shall ensure that the developer has identified (in guidance documentation for application developers

concerning the targeted platform) one or more development environments appropriate for use in developing

applications for the developer's platform. For each of these development environments, the developer shall

provide information on how to configure the environment to ensure that buffer overflow protection mechanisms

in the environment(s) are invoked (e.g., compiler flags). The evaluator shall ensure that this documentation also

includes an indication of whether such protections are on by default, or have to be specifically enabled. The

evaluator shall ensure that the TSF is uniquely identified (with respect to other products from the TSF vendor),

and that documentation provided by the developer in association with the requirements in the ST is associated

with the TSF using this unique identification.

The evaluator noted that the AGD identifies that the subject of the document is for the matching version in the ST.

Section 2 System Requirements of the AGD goes over the different development environments including the

hardware and software claims. Included in the subsection Section 2.1 Supported Operating Systems, the AGD

states “TNMS Client has been evaluated in in a Microsoft Windows 10 (64 bit) environment. The TNMS client is

primarily a Java application and features some native level libraries. For all components, the TNMS client is

compiled with all necessary compilation flags to ensure that all required environmental protections are enabled by

default and require no further configuration under Windows.“

3.3.3 TIMELY SECURITY UPDATES (ALC_TSU_EXT.1)

Assurance Activities: The evaluator shall verify that the TSS contains a description of the timely security update

process used by the developer to create and deploy security updates. The evaluator shall verify that this

description addresses the entire application.

The evaluator shall also verify that, in addition to the TOE developer's process, any third-party processes are also

addressed in the description. The evaluator shall also verify that each mechanism for deployment of security

updates is described. The evaluator shall verify that, for each deployment mechanism described for the update

process, the TSS lists a time between public disclosure of a vulnerability and public availability of the security

update to the TOE patching this vulnerability, to include any third-party or carrier delays in deployment. The

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 70 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

evaluator shall verify that this time is expressed in a number or range of days. The evaluator shall verify that this

description includes the publicly available mechanisms (including either an email address or website) for reporting

security issues related to the TOE.

The evaluator shall verify that the description of this mechanism includes a method for protecting the report either

using a public key for encrypting email or a trusted channel for a website.

Section 6.6 of the ST claims the vendor provides timely security updates for the TOE and third party libraries

included in the TOE. The vendor aims for updates as soon as possible with a maximum of 30 days. Updates are

packaged in the same RPM format as the original installation of the TOE. The vendor maintains a customer portal

where updates can be found and new issues can be reported.

3.4 TESTS (ATE)

3.4.1 INDEPENDENT TESTING - CONFORMANCE (ATE_IND.1)

Assurance Activities: The evaluator shall prepare a test plan and report documenting the testing aspects of the

system, including any application crashes during testing. The evaluator shall determine the root cause of any

application crashes and include that information in the report. The test plan covers all of the testing actions

contained in the [CEM] and the body of this PP's Assurance Activities.

While it is not necessary to have one test case per test listed in an Assurance Activity, the evaluator must

document in the test plan that each applicable testing requirement in the ST is covered. The test plan identifies the

platforms to be tested, and for those platforms not included in the test plan but included in the ST, the test plan

provides a justification for not testing the platforms. This justification must address the differences between the

tested platforms and the untested platforms, and make an argument that the differences do not affect the testing

to be performed. It is not sufficient to merely assert that the differences have no affect; rationale must be

provided. If all platforms claimed in the ST are tested, then no rationale is necessary. The test plan describes the

composition of each platform to be tested, and any setup that is necessary beyond what is contained in the AGD

documentation. It should be noted that the evaluator is expected to follow the AGD documentation for installation

and setup of each platform either as part of a test or as a standard pre-test condition. This may include special test

drivers or tools. For each driver or tool, an argument (not just an assertion) should be provided that the driver or

tool will not adversely affect the performance of the functionality by the TOE and its platform.

This also includes the configuration of the cryptographic engine to be used. The cryptographic algorithms

implemented by this engine are those specified by this PP and used by the cryptographic protocols being evaluated

(IPsec, TLS, SSH). The test plan identifies high-level test objectives as well as the test procedures to be followed to

achieve those objectives. These procedures include expected results.

The test report (which could just be an annotated version of the test plan) details the activities that took place

when the test procedures were executed, and includes the actual results of the tests. This shall be a cumulative

account, so if there was a test run that resulted in a failure; a fix installed; and then a successful re-run of the test,

the report would show a 'fail' and 'pass' result (and the supporting details), and not just the 'pass' result.

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 71 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

The evaluator created a proprietary Detailed Test Report (DTR) to address all aspects of this requirement. The DTR

discusses the test configuration, test cases, expected results, and test results. The following diagram depicts the

test environment

3.5 VULNERABILITY ASSESSMENT (AVA)

3.5.1 VULNERABILITY SURVEY (AVA_VAN.1)

Assurance Activities: The evaluator shall generate a report to document their findings with respect to this

requirement. This report could physically be part of the overall test report mentioned in ATE_IND, or a separate

document. The evaluator performs a search of public information to find vulnerabilities that have been found in

similar applications with a particular focus on network protocols the application uses and document formats it

parses. The evaluator shall also run a virus scanner with the most current virus definitions against the application

files and verify that no files are flagged as malicious. The evaluator documents the sources consulted and the

vulnerabilities found in the report. For each vulnerability found, the evaluator either provides a rationale with

respect to its non-applicability, or the evaluator formulates a test (using the guidelines provided in ATE_IND) to

confirm the vulnerability, if suitable. Suitability is determined by assessing the attack vector needed to take

advantage of the vulnerability. If exploiting the vulnerability requires expert skills and an electron microscope, for

instance, then a test would not be suitable and an appropriate justification would be formulated.

The virus definition search and vulnerability analysis are in the proprietary Detailed Test Report (DTR) prepared by

the evaluator. The evaluator ran a Windows Defender virus scan with current virus definitions against all of the

TOE components and verified that no files are flagged as malicious. The vulnerability analysis includes a public

search for vulnerabilities. The evaluator searched on 12/01/2022 the National Vulnerability Database (NVD) from

 Version 0.3, 12/06/22

GSS CCT Assurance Activity Report Page 72 of 72 © 2021 Gossamer Security Solutions, Inc.
Document: AAR-VID11318 All rights reserved.

the NIST website and the Vulnerability Notes Database (VND) from the CERT Knowledgebase using the following

terms:

• Infinera

• Infinera Corporation

• Transcend Network
Management System

• TNMS

• Apache Xerces

• AdventNet

• AOP Alliance

• Apache Active MQ

• Apache Avalon

• Apache Commons

• Apache FOP

• Apache FTP server

• Apache HttpClient

• Apache ORO

• Apache Tomcat

• Apache Velocity

• Apache XML

• Apached Commons
Codec

• ASM

• AspectJ

• Batik

• Bouncy Castle

• Castor

• cglib

• Disruptor

• Docking Frames

• Dom4j

• EdDSA

• edftpj

• EHCache

• Ganymed

• Guice

• google-collection

• gson

• Guava

• image4j

• InstallAnywhere

• io.grpc

• istack common

• Jakarta Activation

• Jakarta Mail

• Java Architecture for
XML Binding

• Java Communications

• Java FX

• Java Swing

• javaee/glassfish V2
Milestone

• JavaHelp

• Javax Inject

• JavaZoom Basic Player

• JaxB Runtime

• JCalendar

• JDOM

• Jersey

• JFreeChart

• JFreeReport

• jgraphx

• JIDE

• Jlayer

• Jscape

• JSch

• JSR305

• JUnit

• jzlib

• Log4J

• MiGLayout

• MP3SPI

• OpenCensus

• OpenMap

• OpenProps

• Oracle Database JDBC
Drivers

• Plexus

• reactive-streams

• reflections

• rxjava

• SLF4J

• snappy

• SNMP4j

• SSHJ

• Tritonus

• VorbisSPI

• VT Dictionary

• VT Password

• webdavilb

• webdavlib

• Wildfly

• Xalan

• XBean

• XML Commons.

The public vulnerability search did not return back any unresolved vulnerabilities.

