
Security guidelines

Android has built-in security features that signi�cantly reduce the frequency and impact of
application security issues. The system is designed so that you can typically build your apps
with the default system and �le permissions and avoid di�cult decisions about security.

The following core security features help you build secure apps:

The Android application sandbox, which isolates your app data and code execution
from other apps.

An application framework with robust implementations of common security
functionality such as cryptography, permissions, and secure interprocess
communication (IPC).

Technologies like address space layout randomization (ASLR)
 (h�ps://en.wikipedia.org/wiki/Address_space_layout_randomization), no-execute (NX)
 (h�ps://en.wikipedia.org/wiki/NX_bit), ProPolice, safe_iop
 (h�ps://code.google.com/archive/p/safe-iop/wikis/README.wiki), OpenBSD
 (h�ps://www.openbsd.org/) dlmalloc and calloc, and Linux mmap_min_addr to mitigate
risks associated with common memory management errors.

User-granted permissions to restrict access to system features and user data.

Application-de�ned permissions to control application data on a per-app basis.

It's impo�ant to be familiar with the Android security best practices on this page. Following
these practices as general coding habits help you avoid inadve�ently introducing security
issues that adversely a�ect your users.

Authentication

Authentication is a prerequisite for many key security operations. To control access to
protected assets like user data, app functionality, and other resources, you'll need to add
authentication to your Android app.

You can improve your user's authentication experience by integrating your app with
Credential Manager (/training/sign-in/passkeys). Credential Manager is an Android Jetpack

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 1/23

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/NX_bit
https://code.google.com/archive/p/safe-iop/wikis/README.wiki
https://code.google.com/archive/p/safe-iop/wikis/README.wiki
https://code.google.com/archive/p/safe-iop/wikis/README.wiki
https://code.google.com/archive/p/safe-iop/wikis/README.wiki
https://www.openbsd.org/
https://www.openbsd.org/
https://www.openbsd.org/
https://www.openbsd.org/
https://developer.android.com/training/sign-in/passkeys
https://developer.android.com/training/sign-in/passkeys
https://developer.android.com/training/sign-in/passkeys

library that uni�es API suppo� for most major authentication methods, including passkeys,
passwords, and federated sign-in solutions such as Sign-in with Google
 (/training/sign-in/credential-manager).

To fu�her enhance security for your app, consider adding biometric authentication
 (/training/sign-in/biometric-auth) methods such as �ngerprint scans or facial recognition. Good
candidates for adding biometric authentication might include apps for �nancial, healthcare,
or identity management.

Android's auto�ll framework (/guide/topics/text/auto�ll) can ease the sign-up and sign-in
process, reducing error rates and user friction. Auto�ll integrates with password managers,
allowing users to select complex, randomized passwords that can be stored and retrieved
easily and securely.

App integrity

The Play Integrity API (/google/play/integrity) helps you check that interactions and server
requests are coming from your genuine app binary running on a genuine Android-powered
device. By detecting potentially risky and fraudulent interactions, such as from tampered
app versions and untrustwo�hy environments, your app's backend server can respond with
appropriate actions to prevent a�acks and reduce abuse.

Data storage

The most common security concern for an application on Android is whether the data that
you save on the device is accessible to other apps. There are three fundamental ways to
save data on the device:

Internal storage

External storage

Content providers

The following sections describe the security issues associated with each approach.

Internal storage

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 2/23

https://developer.android.com/training/sign-in/credential-manager
https://developer.android.com/training/sign-in/credential-manager
https://developer.android.com/training/sign-in/credential-manager
https://developer.android.com/training/sign-in/credential-manager
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/google/play/integrity
https://developer.android.com/google/play/integrity
https://developer.android.com/google/play/integrity

By default, �les that you create on internal storage (/guide/topics/data/data-storage#�lesInternal)
are accessible only to your app. Android implements this protection, and it's su�cient for
most applications.

Avoid the deprecated MODE_WORLD_WRITEABLE
 (/reference/android/content/Context#MODE_WORLD_WRITEABLE) and MODE_WORLD_READABLE
 (/reference/android/content/Context#MODE_WORLD_READABLE) modes for IPC �les. They don't
provide the ability to limit data access to pa�icular applications, and they don't provide any
control of data format. If you want to share your data with other app processes, consider
using a content provider (/guide/topics/providers/content-providers) instead, which o�ers read
and write permissions to other apps and can make dynamic permission grants on a case-by-
case basis.

External storage

Files created on external storage (/guide/topics/data/data-storage#�lesExternal), such as SD
cards, are globally readable and writable. Because external storage can be removed by the
user and also modi�ed by any application, only store non-sensitive information using
external storage.

Pe�orm input validation (#input-validation) when handling data from external storage as you
would with data from any untrusted source. Don't store executables or class �les on external
storage prior to dynamic loading. If your app does retrieve executable �les from external
storage, make sure the �les are signed and cryptographically veri�ed prior to dynamic
loading.

Content providers

Content providers (/guide/topics/providers/content-providers) o�er a structured storage
mechanism that can be limited to your own application or expo�ed to allow access by other
applications. If you don't intend to provide other applications with access to your
ContentProvider (/reference/android/content/ContentProvider), mark it as
android:exported=false (/guide/topics/manifest/provider-element#expo�ed) in the application
manifest. Otherwise, set the android:exported a�ribute to true to let other apps access
the stored data.

When creating a ContentProvider that is expo�ed for use by other applications, you can
specify a single permission (/guide/topics/manifest/provider-element#prmsn) for reading and

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 3/23

https://developer.android.com/guide/topics/data/data-storage#filesInternal
https://developer.android.com/guide/topics/data/data-storage#filesInternal
https://developer.android.com/guide/topics/data/data-storage#filesInternal
https://developer.android.com/reference/android/content/Context#MODE_WORLD_WRITEABLE
https://developer.android.com/reference/android/content/Context#MODE_WORLD_WRITEABLE
https://developer.android.com/reference/android/content/Context#MODE_WORLD_WRITEABLE
https://developer.android.com/reference/android/content/Context#MODE_WORLD_WRITEABLE
https://developer.android.com/reference/android/content/Context#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context#MODE_WORLD_READABLE
https://developer.android.com/reference/android/content/Context#MODE_WORLD_READABLE
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/data/data-storage#filesExternal
https://developer.android.com/guide/topics/data/data-storage#filesExternal
https://developer.android.com/guide/topics/data/data-storage#filesExternal
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/guide/topics/manifest/provider-element#exported
https://developer.android.com/guide/topics/manifest/provider-element#exported
https://developer.android.com/guide/topics/manifest/provider-element#exported
https://developer.android.com/guide/topics/manifest/provider-element#prmsn
https://developer.android.com/guide/topics/manifest/provider-element#prmsn
https://developer.android.com/guide/topics/manifest/provider-element#prmsn

writing, or you can specify distinct permissions for reading and writing. Limit your
permissions to those required to accomplish the task at hand. Keep in mind that it's usually
easier to add permissions later to expose new functionality than it is to take them away and
impact existing users.

If you are using a content provider for sharing data between only your own apps, we
recommend using the android:protectionLevel
 (/guide/topics/manifest/permission-element#plevel) a�ribute set to signature protection.
Signature permissions (/guide/topics/permissions/overview#signature) don't require user
con�rmation, so they provide a be�er user experience and more controlled access to the
content provider data when the apps accessing the data are signed
 (/tools/publishing/app-signing) with the same key.

Content providers can also provide more granular access by declaring the
android:grantUriPermissions (/guide/topics/manifest/provider-element#gprmsn) a�ribute and
using the FLAG_GRANT_READ_URI_PERMISSION
 (/reference/android/content/Intent#FLAG_GRANT_READ_URI_PERMISSION) and
FLAG_GRANT_WRITE_URI_PERMISSION

 (/reference/android/content/Intent#FLAG_GRANT_WRITE_URI_PERMISSION) �ags in the Intent
 (/reference/android/content/Intent) object that activates the component. The scope of these
permissions can be fu�her limited by the <grant-uri-permission>
 (/guide/topics/manifest/grant-uri-permission-element) element.

When accessing a content provider, use parameterized query methods such as query
 (/reference/android/content/ContentProvider#query(android.net.Uri,%20java.lang.String%5B%5D,%20jav
a.lang.String,%20java.lang.String%5B%5D,%20java.lang.String))()
, update
 (/reference/android/content/ContentProvider#update(android.net.Uri,%20android.content.ContentValues,
%20java.lang.String,%20java.lang.String%5B%5D))()
, and delete()
 (/reference/android/content/ContentProvider#delete(android.net.Uri,%20java.lang.String,%20java.lang.St
ring%5B%5D))
to avoid potential SQL injection from untrusted sources. Note that using parameterized
methods is not su�cient if the selection argument is built by concatenating user data prior
to submi�ing it to the method.

Don't have a false sense of security about the write permission. The write permission allows
SQL statements that make it possible for some data to be con�rmed using creative WHERE
clauses and parsing the results. For example, an a�acker might probe for the presence of a
speci�c phone number in a call log by modifying a row only if that phone number already

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 4/23

https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/permissions/overview#signature
https://developer.android.com/guide/topics/permissions/overview#signature
https://developer.android.com/guide/topics/permissions/overview#signature
https://developer.android.com/tools/publishing/app-signing
https://developer.android.com/tools/publishing/app-signing
https://developer.android.com/tools/publishing/app-signing
https://developer.android.com/tools/publishing/app-signing
https://developer.android.com/guide/topics/manifest/provider-element#gprmsn
https://developer.android.com/guide/topics/manifest/provider-element#gprmsn
https://developer.android.com/guide/topics/manifest/provider-element#gprmsn
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_READ_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_READ_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_READ_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_READ_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_WRITE_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_WRITE_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_WRITE_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent#FLAG_GRANT_WRITE_URI_PERMISSION
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/topics/manifest/grant-uri-permission-element
https://developer.android.com/guide/topics/manifest/grant-uri-permission-element
https://developer.android.com/guide/topics/manifest/grant-uri-permission-element
https://developer.android.com/guide/topics/manifest/grant-uri-permission-element
https://developer.android.com/reference/android/content/ContentProvider#query(android.net.Uri,%20java.lang.String%5B%5D,%20java.lang.String,%20java.lang.String%5B%5D,%20java.lang.String))(
https://developer.android.com/reference/android/content/ContentProvider#query(android.net.Uri,%20java.lang.String%5B%5D,%20java.lang.String,%20java.lang.String%5B%5D,%20java.lang.String))(
https://developer.android.com/reference/android/content/ContentProvider#query(android.net.Uri,%20java.lang.String%5B%5D,%20java.lang.String,%20java.lang.String%5B%5D,%20java.lang.String))(
https://developer.android.com/reference/android/content/ContentProvider#query(android.net.Uri,%20java.lang.String%5B%5D,%20java.lang.String,%20java.lang.String%5B%5D,%20java.lang.String))(
https://developer.android.com/reference/android/content/ContentProvider#query(android.net.Uri,%20java.lang.String%5B%5D,%20java.lang.String,%20java.lang.String%5B%5D,%20java.lang.String))(
https://developer.android.com/reference/android/content/ContentProvider#update(android.net.Uri,%20android.content.ContentValues,%20java.lang.String,%20java.lang.String%5B%5D))(
https://developer.android.com/reference/android/content/ContentProvider#update(android.net.Uri,%20android.content.ContentValues,%20java.lang.String,%20java.lang.String%5B%5D))(
https://developer.android.com/reference/android/content/ContentProvider#update(android.net.Uri,%20android.content.ContentValues,%20java.lang.String,%20java.lang.String%5B%5D))(
https://developer.android.com/reference/android/content/ContentProvider#update(android.net.Uri,%20android.content.ContentValues,%20java.lang.String,%20java.lang.String%5B%5D))(
https://developer.android.com/reference/android/content/ContentProvider#update(android.net.Uri,%20android.content.ContentValues,%20java.lang.String,%20java.lang.String%5B%5D))(
https://developer.android.com/reference/android/content/ContentProvider#delete(android.net.Uri,%20java.lang.String,%20java.lang.String%5B%5D)
https://developer.android.com/reference/android/content/ContentProvider#delete(android.net.Uri,%20java.lang.String,%20java.lang.String%5B%5D)
https://developer.android.com/reference/android/content/ContentProvider#delete(android.net.Uri,%20java.lang.String,%20java.lang.String%5B%5D)
https://developer.android.com/reference/android/content/ContentProvider#delete(android.net.Uri,%20java.lang.String,%20java.lang.String%5B%5D)
https://developer.android.com/reference/android/content/ContentProvider#delete(android.net.Uri,%20java.lang.String,%20java.lang.String%5B%5D)

exists. If the content provider data has predictable structure, the write permission might be
equivalent to providing both reading and writing.

Permissions

Because Android sandboxes applications from each other, applications must explicitly share
resources and data. They do this by declaring the permissions they need for additional
capabilities not provided by the basic sandbox, including access to device features such as
the camera.

Permission requests

Minimize the number of permissions that your app requests. Restricting access to sensitive
permissions reduces the risk of inadve�ently misusing those permissions, improves user
adoption, and makes your app less vulnerable for a�ackers. Generally, if a permission isn't
required for your app to function, don't request it. See the guide to evaluating whether your
app needs to declare permissions (/training/permissions/evaluating).

If possible, design your application in a way that doesn't require any permissions. For
example, rather than requesting access to device information to create a unique identi�er,
create a UUID (/reference/java/util/UUID) for your application. (Learn more in the section about
user data (#user-data)). Or, rather than using external storage (which requires permission),
store data on internal storage.

In addition to requesting permissions, your application can use the <permission>
 (/guide/topics/manifest/permission-element) element to protect IPC that is security sensitive and
is exposed to other applications, such as a ContentProvider
 (/reference/android/content/ContentProvider). In general, we recommend using access controls
other than user-con�rmed permissions where possible, because permissions can be
confusing for users. For example, consider using the signature protection level
 (/guide/topics/manifest/permission-element#plevel) on permissions for IPC communication
between applications provided by a single developer.

Don't leak permission-protected data. This occurs when your app exposes data over IPC
that is available only because your app has permission to access that data. The clients of
your app's IPC inte�ace might not have that same data-access permission. More details on
the frequency and potential e�ects of this issue appear in the research paper Permission

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 5/23

https://developer.android.com/training/permissions/evaluating
https://developer.android.com/training/permissions/evaluating
https://developer.android.com/training/permissions/evaluating
https://developer.android.com/training/permissions/evaluating
https://developer.android.com/reference/java/util/UUID
https://developer.android.com/reference/java/util/UUID
https://developer.android.com/reference/java/util/UUID
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf

Re-Delegation: A�acks and Defenses
 (h�ps://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf) , published at USENIX.

Permission de�nitions

De�ne the smallest set of permissions that satisfy your security requirements. Creating a
new permission is relatively uncommon for most applications, because the system-de�ned
permissions (/reference/android/Manifest.permission) cover many situations. Where appropriate,
pe�orm access checks using existing permissions.

If you need a new permission, consider whether you can accomplish your task with a
signature protection level (/guide/topics/manifest/permission-element#plevel). Signature
permissions are transparent to the user and allow access only by applications signed by the
same developer as the application pe�orming the permission check.

If creating a new permission is still required, declare it in the app manifest using the
<permission> (/guide/topics/manifest/permission-element) element. Apps using the new
permission can reference it by adding a <uses-permission>
 (/guide/topics/manifest/uses-permission-element) element in their manifest �les. You can also add
permissions dynamically by using the addPermission()
 (/reference/android/content/pm/PackageManager#addPermission(android.content.pm.PermissionInfo))
method.

If you create a permission with the dangerous protection level, there are a number of
complexities that you need to consider:

The permission must have a string that concisely expresses to the user the security
decision they are required to make.

The permission string must be localized to many di�erent languages.

Users might choose not to install an application because a permission is confusing or
perceived as risky.

Applications might request the permission when the creator of the permission hasn't
been installed.

Each of these poses a signi�cant nontechnical challenge for you as the developer while also
confusing your users, which is why we discourage the use of the dangerous permission
level.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 6/23

https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/reference/android/content/pm/PackageManager#addPermission(android.content.pm.PermissionInfo)
https://developer.android.com/reference/android/content/pm/PackageManager#addPermission(android.content.pm.PermissionInfo)
https://developer.android.com/reference/android/content/pm/PackageManager#addPermission(android.content.pm.PermissionInfo)
https://developer.android.com/reference/android/content/pm/PackageManager#addPermission(android.content.pm.PermissionInfo)

Networking

Network transactions are inherently risky for security, because they involve transmi�ing data
that is potentially private to the user. People are increasingly aware of the privacy concerns
of a mobile device, especially when the device pe�orms network transactions, so it's very
impo�ant that your app implement all best practices toward keeping the user's data secure
at all times.

IP networking

Networking on Android is not signi�cantly di�erent from other Linux environments. The key
consideration is making sure that appropriate protocols are used for sensitive data, such as
HttpsURLConnection (/reference/javax/net/ssl/H�psURLConnection) for secure web tra�c. Use
HTTPS over HTTP anywhere that HTTPS is suppo�ed on the server, because mobile devices
frequently connect on networks that aren't secured, such as public Wi-Fi hotspots.

Authenticated, encrypted socket-level communication can be easily implemented using the
SSLSocket (/reference/javax/net/ssl/SSLSocket) class. Given the frequency with which Android
devices connect to unsecured wireless networks using Wi-Fi, the use of secure networking is
strongly encouraged for all applications that communicate over the network.

Some applications use localhost (h�ps://en.wikipedia.org/wiki/Localhost) network po�s for
handling sensitive IPC. Don't use this approach, because these inte�aces are accessible by
other applications on the device. Instead, use an Android IPC mechanism where
authentication is possible, such as with a Service (/reference/android/app/Service). Binding to
the non-speci�c IP address INADDR_ANY is worse than using loopback, because it allows
your application to receive requests from any IP address.

Make sure that you don't trust data downloaded from HTTP or other insecure protocols. This
includes validation of input in WebView (/reference/android/webkit/WebView) and any responses
to intents issued against HTTP.

Telephony networking

The Sho� Message Service (SMS) protocol was primarily designed for user-to-user
communication and isn't well suited for apps that want to transfer data. Due to the
limitations of SMS, we recommend using Firebase Cloud Messaging

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 7/23

https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://en.wikipedia.org/wiki/Localhost
https://en.wikipedia.org/wiki/Localhost
https://en.wikipedia.org/wiki/Localhost
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://firebase.google.com/docs/cloud-messaging/

 (h�ps://�rebase.google.com/docs/cloud-messaging/) (FCM) and IP networking for sending data
messages from a web server to your app on a user device.

Be aware that SMS is neither encrypted nor strongly authenticated on either the network or
the device. In pa�icular, any SMS receiver should expect that a malicious user might have
sent the SMS to your application. Don't rely on unauthenticated SMS data to pe�orm
sensitive commands. Also, be aware that SMS can be subject to spoo�ng and/or interception
on the network. On the Android-powered device itself, SMS messages are transmi�ed as
broadcast intents, so they can be read or captured by other applications that have the
READ_SMS (/reference/android/Manifest.permission#READ_SMS) permission.

Input validation

Insu�cient input validation is one of the most common security problems a�ecting
applications, regardless of what pla�orm they run on. Android has pla�orm-level
countermeasures that reduce the exposure of applications to input validation issues, and we
recommend that you use those features where possible. Also, we recommend using type-
safe languages to reduce the likelihood of input validation issues.

If you are using native code, any data read from �les, received over the network, or received
from an IPC has the potential to introduce a security issue. The most common problems are
bu�er ove�lows (h�ps://en.wikipedia.org/wiki/Bu�er_ove�low), use a�er free
 (h�ps://en.wikipedia.org/wiki/Double_free#Use_a�er_free), and o�-by-one errors
 (h�ps://en.wikipedia.org/wiki/O�-by-one_error). Android provides a number of technologies, like
ASLR and Data Execution Prevention (DEP), that reduce the exploitability of these errors,
but they don't solve the underlying problem. You can prevent these vulnerabilities by
carefully handling pointers and managing bu�ers.

Dynamic, string-based languages such as JavaScript and SQL are also subject to input
validation problems due to escape characters and script injection
 (h�ps://en.wikipedia.org/wiki/Code_injection).

If you are using data within queries that are submi�ed to an SQL database or a content
provider, SQL injection can be an issue. The best defense is to use parameterized queries, as
discussed in the section about content providers (#content-providers). Limiting permissions to
read-only or write-only can also reduce the potential for harm related to SQL injection.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 8/23

https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/
https://developer.android.com/reference/android/Manifest.permission#READ_SMS
https://developer.android.com/reference/android/Manifest.permission#READ_SMS
https://developer.android.com/reference/android/Manifest.permission#READ_SMS
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Double_free#Use_after_free
https://en.wikipedia.org/wiki/Double_free#Use_after_free
https://en.wikipedia.org/wiki/Double_free#Use_after_free
https://en.wikipedia.org/wiki/Double_free#Use_after_free
https://en.wikipedia.org/wiki/Off-by-one_error
https://en.wikipedia.org/wiki/Off-by-one_error
https://en.wikipedia.org/wiki/Off-by-one_error
https://en.wikipedia.org/wiki/Off-by-one_error
https://en.wikipedia.org/wiki/Code_injection
https://en.wikipedia.org/wiki/Code_injection
https://en.wikipedia.org/wiki/Code_injection
https://en.wikipedia.org/wiki/Code_injection

If you can't use the security features discussed in this section, make sure to use well-
structured data formats and verify that the data conforms to the expected format. While
blocking speci�c characters or pe�orming character replacement can be an e�ective
strategy, these techniques are error prone in practice, and we recommend avoiding them
when possible.

User data

The best approach for user data security is to minimize the use of APIs that access sensitive
or personal information. If you have access to user data, avoid storing or transmi�ing it if
you can. Consider whether your application logic can be implemented using a hash or non-
reversible form of the data. For example, your app might use the hash of an email address as
a primary key to avoid transmi�ing or storing the email address. This reduces the chances of
inadve�ently exposing data, and it also reduces the chance of a�ackers a�empting to
exploit your app.

Authenticate your user whenever access to private data is required, and use modern
authentication methods such as passkeys (h�ps://developers.google.com/identity/passkeys) and
Credential Manager (/training/sign-in/passkeys). If your app needs to access personal
information, keep in mind that some jurisdictions might require you to provide a privacy
policy explaining your use and storage of that data. Follow the security best practice of
minimizing access to user data to simplify compliance.

Also, consider whether your application could inadve�ently expose personal information to
other pa�ies, such as third-pa�y components for adve�ising or third-pa�y services used
by your application. If you don't know why a component or service requires personal
information, don't provide it. In general, reducing the access to personal information by your
application reduces the potential for problems in this area.

If your app requires access to sensitive data, evaluate whether you need to transmit it to a
server or if you can run the operation on the client. Consider running any code using
sensitive data on the client to avoid transmi�ing user data. Also, make sure that you don't
inadve�ently expose user data to other applications on the device through overly
permissive IPC, world-writable �les, or network sockets. Overly permissive IPC is a special
case of leaking permission-protected data, discussed in the Permission requests
 (#requesting-permissions) section.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 9/23

https://developers.google.com/identity/passkeys
https://developers.google.com/identity/passkeys
https://developers.google.com/identity/passkeys
https://developer.android.com/training/sign-in/passkeys
https://developer.android.com/training/sign-in/passkeys
https://developer.android.com/training/sign-in/passkeys

If a Globally Unique Identi�er (GUID) is required, create a large, unique number and store it.
Don't use phone identi�ers such as the phone number or IMEI, which might be associated
with personal information. This topic is discussed in more detail in the page about best
practices for unique identi�ers (/training/a�icles/user-data-ids).

Be careful when writing to on-device logs. On Android, logs are a shared resource and are
available to an application with the READ_LOGS
 (/reference/android/Manifest.permission#READ_LOGS) permission. Even though the phone log
data is temporary and erased on reboot, inappropriate logging of user information could
inadve�ently leak user data to other applications. In addition ton't logging PII, limit log usage
in production apps. To easily implement this, use debug �ags and custom Log classes with
easily con�gurable logging levels.

WebView

Because WebView (/reference/android/webkit/WebView) consumes web content that can include
HTML and JavaScript, improper use can introduce common web security issues such as
cross-site scripting (h�ps://en.wikipedia.org/wiki/Cross_site_scripting) (JavaScript injection).
Android includes a number of mechanisms to reduce the scope of these potential issues by
limiting the capability of WebView to the minimum functionality required by your application.

If your application doesn't directly use JavaScript within a WebView, don't call
setJavaScriptEnabled (/reference/android/webkit/WebSe�ings#setJavaScriptEnabled(boolean))().
Some sample code uses this method; if you repurpose sample code that uses it in a
production application, remove that method call if it's not required. By default, WebView
doesn't execute JavaScript, so cross-site scripting is not possible.

Use addJavaScriptInterface()
 (/reference/android/webkit/WebView#addJavascriptInte�ace(java.lang.Object,%20java.lang.String))
with pa�icular care, because it lets JavaScript invoke operations that are normally reserved
for Android applications. If you use it, expose addJavaScriptInterface() only to web
pages from which all input is trustwo�hy. If untrusted input is allowed, untrusted JavaScript
might be able to invoke Android methods within your app. In general, we recommend
exposing addJavaScriptInterface() only to JavaScript that is contained within your
application APK.

If your application accesses sensitive data with a WebView, consider using the
clearCache() (/reference/android/webkit/WebView#clearCache(boolean)) method to delete any

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 10/23

https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/reference/android/Manifest.permission#READ_LOGS
https://developer.android.com/reference/android/Manifest.permission#READ_LOGS
https://developer.android.com/reference/android/Manifest.permission#READ_LOGS
https://developer.android.com/reference/android/Manifest.permission#READ_LOGS
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://en.wikipedia.org/wiki/Cross_site_scripting
https://en.wikipedia.org/wiki/Cross_site_scripting
https://en.wikipedia.org/wiki/Cross_site_scripting
https://developer.android.com/reference/android/webkit/WebSettings#setJavaScriptEnabled(boolean))(
https://developer.android.com/reference/android/webkit/WebSettings#setJavaScriptEnabled(boolean))(
https://developer.android.com/reference/android/webkit/WebSettings#setJavaScriptEnabled(boolean))(
https://developer.android.com/reference/android/webkit/WebView#addJavascriptInterface(java.lang.Object,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebView#addJavascriptInterface(java.lang.Object,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebView#addJavascriptInterface(java.lang.Object,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebView#addJavascriptInterface(java.lang.Object,%20java.lang.String)
https://developer.android.com/reference/android/webkit/WebView#clearCache(boolean)
https://developer.android.com/reference/android/webkit/WebView#clearCache(boolean)
https://developer.android.com/reference/android/webkit/WebView#clearCache(boolean)

�les stored locally. You can also use server-side headers, such as no-store, to indicate that
an application should not cache pa�icular content.

Devices running pla�orms older than Android 4.4 (API level 19) use a version of webkit
 (/reference/android/webkit/package-summary) that has a number of security issues. As a
workaround, if your app is running on these devices, it must con�rm that WebView objects
display only trusted content. To make sure your app isn't exposed to potential vulnerabilities
in SSL, use the updatable security Provider (/reference/java/security/Provider) object as
described in Update your security provider to protect against SSL exploits
 (/training/a�icles/security-gms-provider). If your application must render content from the open
web, consider providing your own renderer so you can keep it up to date with the latest
security patches.

Credential requests

Credential requests are a vector for a�ack. Here are some tips to help you make credential
requests in your Android apps more secure.

Minimize credential exposure

Avoid unnecessary credential requests. To make phishing a�acks more conspicuous
and less likely to be successful, minimize the frequency of asking for user credentials.
Instead, use an authorization token and refresh it. Request only the minimum amount
of credential information necessary for authentication and authorization.

Store credentials securely. Use Credential Manager (/training/sign-in/passkeys) to
enable passwordless authentication using passkeys or to implement federated sign-in
using schemes such as Sign in with Google. If you must use traditional password
authentication, don't store user IDs and passwords on the device. Instead, pe�orm
initial authentication using the username and password supplied by the user, and then
use a sho�-lived, service-speci�c authorization token.

Limit the scope of permissions. Don't request broad permissions for a task that only
requires a more narrow scope.

Limit access tokens. Use sho�-lived tokens operations and API calls.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 11/23

https://developer.android.com/reference/android/webkit/package-summary
https://developer.android.com/reference/android/webkit/package-summary
https://developer.android.com/reference/android/webkit/package-summary
https://developer.android.com/reference/android/webkit/package-summary
https://developer.android.com/reference/java/security/Provider
https://developer.android.com/reference/java/security/Provider
https://developer.android.com/reference/java/security/Provider
https://developer.android.com/training/articles/security-gms-provider
https://developer.android.com/training/articles/security-gms-provider
https://developer.android.com/training/articles/security-gms-provider
https://developer.android.com/training/articles/security-gms-provider
https://developer.android.com/training/sign-in/passkeys
https://developer.android.com/training/sign-in/passkeys
https://developer.android.com/training/sign-in/passkeys

Limit authentication rates. Rapid, successive authentication or authorization
requests can be a sign of a brute-force a�ack. Limit these rates to a reasonable
frequency while still allowing for a functional and user-friendly app experience.

Use secure authentication

Implement passkeys. Enable passkeys as a more secure and user-friendly upgrade to
passwords.

Add biometrics. O�er the ability to use biometric authentication
 (/training/sign-in/biometric-auth) such as �ngerprint or facial recognition for added
security.

Use federated identity providers. Credential Manager suppo�s federated
authentication providers such as Sign in with Google (/training/sign-in/credential-manager).

Encrypt communication Use HTTPS and similar technologies to ensure the data your
app sends over a network is protected.

Practice secure account management

Connect to services that are accessible to multiple applications using AccountManager
 (/reference/android/accounts/AccountManager). Use the AccountManager class to invoke a
cloud-based service, and don't store passwords on the device.

A�er using AccountManager to retrieve an Account (/reference/android/accounts/Account),
use CREATOR (/reference/android/accounts/Account#CREATOR) before passing in any
credentials so that you don't inadve�ently pass credentials to the wrong application.

If credentials are used only by applications that you create, you can verify the
application that accesses the AccountManager using checkSignatures
 (/reference/android/content/pm/PackageManager#checkSignatures(int,%20int))(). Alternatively,
if only one application uses the credential, you might use a KeyStore
 (/reference/java/security/KeyStore) for storage.

Stay vigilant

Keep your code up-to-date. Be sure to update your source code, including any third-
pa�y libraries and dependencies, to guard against the latest vulnerabilities.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 12/23

https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/biometric-auth
https://developer.android.com/training/sign-in/credential-manager
https://developer.android.com/training/sign-in/credential-manager
https://developer.android.com/training/sign-in/credential-manager
https://developer.android.com/reference/android/accounts/AccountManager
https://developer.android.com/reference/android/accounts/AccountManager
https://developer.android.com/reference/android/accounts/AccountManager
https://developer.android.com/reference/android/accounts/AccountManager
https://developer.android.com/reference/android/accounts/Account
https://developer.android.com/reference/android/accounts/Account
https://developer.android.com/reference/android/accounts/Account
https://developer.android.com/reference/android/accounts/Account#CREATOR
https://developer.android.com/reference/android/accounts/Account#CREATOR
https://developer.android.com/reference/android/accounts/Account#CREATOR
https://developer.android.com/reference/android/content/pm/PackageManager#checkSignatures(int,%20int))(
https://developer.android.com/reference/android/content/pm/PackageManager#checkSignatures(int,%20int))(
https://developer.android.com/reference/android/content/pm/PackageManager#checkSignatures(int,%20int))(
https://developer.android.com/reference/android/content/pm/PackageManager#checkSignatures(int,%20int))(
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore

Monitor suspicious activity. Look for potential misuse, such as pa�erns of
authorization misuse.

Audit your code. Pe�orm regular security checks against your codebase to look for
potential credential request issues.

API key management

API keys are a critical component of many Android apps, enabling them to access external
services and pe�orm essential functions such as connecting to mapping services,
authentication, and weather services. However, exposing these sensitive keys can have
severe consequences, including data breaches, unauthorized access, and �nancial losses.
To prevent such scenarios, developers should implement secure strategies for handling API
keys throughout the development process.

To protect services from misuse, API keys must be carefully protected. To secure a
connection between the app and a service that uses an API key, you need to secure the
access to the API. When your app is compiled, and your app's source code includes API
keys, it's possible for an a�acker to decompile the app and �nd these resources.

This section is intended for two groups of Android developers: those who work with
infrastructure teams on their continuous delivery pipeline, and those who deploy standalone
apps in the Play store. This section outlines best practices for how to handle API keys, so
your app can communicate with services securely.

Generation and storage

Developers should treat API key storage as a critical component of data protection and user
privacy using a defense-in-depth approach.

Strong key storage

For optimal key management security, use the Android Keystore (/privacy-and-security/keystore)
, and encrypt stored keys using a robust tool such as the security-crypto
 (/jetpack/androidx/releases/security#security-crypto-1.0.) Jetpack library or Tink Java
 (h�ps://github.com/tink-crypto/tink-java).

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 13/23

https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/jetpack/androidx/releases/security#security-crypto-1.0.
https://developer.android.com/jetpack/androidx/releases/security#security-crypto-1.0.
https://developer.android.com/jetpack/androidx/releases/security#security-crypto-1.0.
https://developer.android.com/jetpack/androidx/releases/security#security-crypto-1.0.
https://github.com/tink-crypto/tink-java
https://github.com/tink-crypto/tink-java
https://github.com/tink-crypto/tink-java
https://github.com/tink-crypto/tink-java

The following example uses the Jetpack security-crypto library to create encrypted shared
preferences (/reference/kotlin/androidx/security/crypto/EncryptedSharedPreferences).

Source control exclusion

Never commit API keys to your source code repository. Adding API keys to source code risks
exposure of keys to public repositories, shared code examples, and accidentally-shared
�les. Instead, use Gradle plugins such as the secrets-gradle-plugin
 (h�ps://github.com/google/secrets-gradle-plugin) to work with API keys in your project.

Environment-speci�c keys

If possible, use separate API keys development, testing, and production environments. Use
environment-speci�c keys to isolate each environment, reducing the risk of exposing
production data and allowing you to disable compromised keys without a�ecting your
production environment.

Usage and access control

Secure API key practices are essential for protecting your API and your users. Here's how to
prepare your keys for optimal security:

Kotlin

 (#kotlin)
Java (#java)

val masterKey = MasterKey.Builder(context)

.setKeyScheme(MasterKey.KeyScheme.AES256_GCM)

.build()

val encryptedSharedPreferences = EncryptedSharedPreferences.create(

 context,

"secret_shared_prefs",

 masterKey,

EncryptedSharedPreferences.PrefKeyEncryptionScheme.AES256_SIV,

EncryptedSharedPreferences.PrefValueEncryptionScheme.AES256_GCM

)

// use the shared preferences and editor as you normally would

encryptedSharedPreferences.edit()

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 14/23

https://developer.android.com/reference/kotlin/androidx/security/crypto/EncryptedSharedPreferences
https://developer.android.com/reference/kotlin/androidx/security/crypto/EncryptedSharedPreferences
https://developer.android.com/reference/kotlin/androidx/security/crypto/EncryptedSharedPreferences
https://developer.android.com/reference/kotlin/androidx/security/crypto/EncryptedSharedPreferences
https://github.com/google/secrets-gradle-plugin
https://github.com/google/secrets-gradle-plugin
https://github.com/google/secrets-gradle-plugin
https://github.com/google/secrets-gradle-plugin

Generate unique keys for each app: Use separate API keys for each app to help
identify and isolate compromised access.

Implement IP restrictions: If possible, limit API key usage to speci�c IP addresses or
ranges.

Limit mobile app key usage: Limit API key usage to speci�c mobile apps by bundling
them with the key or by using app ce�i�cates.

Log and monitor for suspicious activity: Implement API usage logging and
monitoring mechanisms to detect suspicious activity and prevent potential abuse.

Note: Your service should provide features for restricting keys to a pa�icular package or
pla�orm. For example, the Google Maps API
 (h�ps://developers.google.com/maps/api-security-best-practices#restricting-api-keys) limits key
access by package name and signing key.

OAuth 2.0 provides a framework for authorizing access to resources. It de�nes standards
for how clients and servers should interact, and it allows for secure authorization. You can
use OAuth 2.0 to restrict API key usage to speci�c clients, and de�ne the access scope so
that each API key only has the minimum level of access required for their intended purpose.

Key rotation and expiration

To reduce the risk of unauthorized access through undiscovered API vulnerabilities, it is
impo�ant to rotate API keys regularly. The ISO 27001 (h�ps://www.iso.org/standard/27001)
standard de�nes a compliance framework for how o�en to pe�orm key rotation. For most
cases, a key rotation period between 90 days to 6 months should be adequate.
Implementing a robust key management system can help you streamline these processes,
improving the e�ciency of your key rotation and expiration needs.

General best practices

Use SSL/HTTPS: Always use HTTPS communication to encrypt your API requests.

Ce�i�cate pinning: For an extra layer of security, you can consider implementing
ce�i�cate pinning (/privacy-and-security/security-con�g#Ce�i�catePinning) to check which
ce�i�cates are considered valid.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 15/23

https://developers.google.com/maps/api-security-best-practices#restricting-api-keys
https://developers.google.com/maps/api-security-best-practices#restricting-api-keys
https://developers.google.com/maps/api-security-best-practices#restricting-api-keys
https://developers.google.com/maps/api-security-best-practices#restricting-api-keys
https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://developer.android.com/privacy-and-security/security-config#CertificatePinning
https://developer.android.com/privacy-and-security/security-config#CertificatePinning
https://developer.android.com/privacy-and-security/security-config#CertificatePinning

Validate and sanitize user input: Validate and sanitize user input to prevent injection
a�acks that could expose API keys.

Follow security best practices: Implement general security best practices in your
development process, including secure coding techniques, code reviews, and
vulnerability scanning.

Stay informed: Stay updated on the latest security threats and best practices for API
key management.

SDKs up-to-date: Make sure your SDKs and libraries are updated to the latest version.

Cryptography

In addition to providing data isolation, suppo�ing full-�lesystem encryption, and providing
secure communications channels, Android provides a wide array of algorithms for protecting
data using cryptography.

Know which Java Cryptography Architecture (JCA) security providers your so�ware uses.
Try to use the highest level of the pre-existing framework implementation that can suppo�
your use case. If applicable, use the Google-provided providers in the Google-speci�ed
order.

If you need to securely retrieve a �le from a known network location, a simple HTTPS URI
might be adequate and requires no knowledge of cryptography. If you need a secure tunnel,
consider using HttpsURLConnection (/reference/javax/net/ssl/H�psURLConnection) or SSLSocket
 (/reference/javax/net/ssl/SSLSocket) rather than writing your own protocol. If you use
SSLSocket, be aware that it doesn't pe�orm hostname veri�cation. See Warnings about
using SSLSocket directly (/training/a�icles/security-ssl#WarningsSslSocket).

If you �nd that you need to implement your own protocol, don't implement your own
cryptographic algorithms. Use existing cryptographic algorithms, such as the
implementations of AES and RSA provided in the Cipher (/reference/javax/crypto/Cipher) class.
Additionally, follow these best practices:

Use 256-bit AES for commercial purposes. (If unavailable, use 128-bit AES.)

Use either 224- or 256-bit public key sizes for elliptic curve (EC) cryptography.

Know when to use CBC, CTR, or GCM block modes.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 16/23

https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://developer.android.com/reference/javax/net/ssl/SSLSocket
https://developer.android.com/training/articles/security-ssl#WarningsSslSocket
https://developer.android.com/training/articles/security-ssl#WarningsSslSocket
https://developer.android.com/training/articles/security-ssl#WarningsSslSocket
https://developer.android.com/training/articles/security-ssl#WarningsSslSocket
https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/reference/javax/crypto/Cipher

Avoid IV/counter reuse in CTR mode. Ensure that they're cryptographically random.

When using encryption, implement integrity using the CBC or CTR mode with one of
the following functions:

HMAC-SHA1

HMAC-SHA-256

HMAC-SHA-512

GCM mode

Use a secure random number generator, SecureRandom (/reference/java/security/SecureRandom),
to initialize any cryptographic keys generated by KeyGenerator
 (/reference/javax/crypto/KeyGenerator). Use of a key that is not generated with a secure random
number generator signi�cantly weakens the strength of the algorithm and may allow o�ine
a�acks.

If you need to store a key for repeated use, use a mechanism, such as KeyStore
 (/reference/java/security/KeyStore), that provides long term storage and retrieval of
cryptographic keys.

Interprocess communication

Some apps a�empt to implement IPC using traditional Linux techniques such as network
sockets and shared �les. However, we recommend instead that you use Android system
functionality for IPC such as Intent (/reference/android/content/Intent), Binder
 (/reference/android/os/Binder) or Messenger (/reference/android/os/Messenger) with a Service
 (/reference/android/app/Service), and BroadcastReceiver
 (/reference/android/content/BroadcastReceiver). The Android IPC mechanisms let you verify the
identity of the application connecting to your IPC and set security policy for each IPC
mechanism.

Many of the security elements are shared across IPC mechanisms. If your IPC mechanism
isn't intended for use by other applications, set the android:exported a�ribute to false in
the component's manifest element, such as for the <service>
 (/guide/topics/manifest/service-element#expo�ed) element. This is useful for applications that
consist of multiple processes within the same UID or if you decide late in development that

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 17/23

https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/javax/crypto/KeyGenerator
https://developer.android.com/reference/javax/crypto/KeyGenerator
https://developer.android.com/reference/javax/crypto/KeyGenerator
https://developer.android.com/reference/javax/crypto/KeyGenerator
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Messenger
https://developer.android.com/reference/android/os/Messenger
https://developer.android.com/reference/android/os/Messenger
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#exported

you don't actually want to expose functionality as IPC, but you don't want to rewrite the
code.

If your IPC is accessible to other applications, you can apply a security policy by using the
<permission> (/guide/topics/manifest/permission-element) element. If the IPC is between apps
that are your own and are signed with the same key, use a signature-level permission in
the android:protectionLevel (/guide/topics/manifest/permission-element#plevel).

Intents

For activities and broadcast receivers, intents are the preferred mechanism for
asynchronous IPC on Android. Depending on your application requirements, you might use
sendBroadcast (/reference/android/content/Context#sendBroadcast(android.content.Intent))(),
sendOrderedBroadcast

 (/reference/android/content/Context#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)
)()
, or an explicit intent to a speci�c application component. For security purposes, explicit
intents are preferred.

Caution: If you use an intent to bind to a **Service** (/reference/android/app/Service), use an
explicit (/guide/components/intents-�lters#Types) intent to keep your app secure. Using an
implicit intent to sta� a service is a security hazard, because you can't be ce�ain what
service will respond to the intent and the user can't see which service sta�s. Beginning with
Android 5.0 (API level 21), the system throws an exception if you call **bindService()**
 (/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceCo
nnection,%20int))
with an implicit intent.

Note that ordered broadcasts can be consumed by a recipient, so they might not be
delivered to all applications. If you are sending an intent that must be delivered to a speci�c
receiver, you must use an explicit intent that declares the receiver by name.

Senders of an intent can verify that the recipient has permission by specifying a non-null
permission with the method call. Only applications with that permission receive the intent. If
data within a broadcast intent might be sensitive, consider applying a permission to make
sure that malicious applications can't register to receive those messages without
appropriate permissions. In those circumstances, you might also consider invoking the
receiver directly, rather than raising a broadcast.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 18/23

https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/guide/topics/manifest/permission-element#plevel
https://developer.android.com/reference/android/content/Context#sendBroadcast(android.content.Intent))(
https://developer.android.com/reference/android/content/Context#sendBroadcast(android.content.Intent))(
https://developer.android.com/reference/android/content/Context#sendBroadcast(android.content.Intent))(
https://developer.android.com/reference/android/content/Context#sendOrderedBroadcast(android.content.Intent,%20java.lang.String))(
https://developer.android.com/reference/android/content/Context#sendOrderedBroadcast(android.content.Intent,%20java.lang.String))(
https://developer.android.com/reference/android/content/Context#sendOrderedBroadcast(android.content.Intent,%20java.lang.String))(
https://developer.android.com/reference/android/content/Context#sendOrderedBroadcast(android.content.Intent,%20java.lang.String))(
https://developer.android.com/reference/android/content/Context#sendOrderedBroadcast(android.content.Intent,%20java.lang.String))(
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/guide/components/intents-filters#Types
https://developer.android.com/guide/components/intents-filters#Types
https://developer.android.com/guide/components/intents-filters#Types
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)

Note: Intent �lters aren't security features. Components can be invoked with explicit intents
and might not have data that would conform to the intent �lter. To con�rm that it is properly
forma�ed for the invoked receiver, service, or activity, pe�orm input validation within your
intent receiver.

Services

A Service (/reference/android/app/Service) is o�en used to supply functionality for other
applications to use. Each service class must have a corresponding <service>
 (/guide/topics/manifest/service-element) declaration in its manifest �le.

By default, services aren't expo�ed and can't be invoked by any other application. However,
if you add any intent �lters to the service declaration, it is expo�ed by default. It's best if you
explicitly declare the android:exported (/guide/topics/manifest/service-element#expo�ed)
a�ribute to be sure it behaves the way you intend it to. Services can also be protected using
the android:permission (/guide/topics/manifest/service-element#prmsn) a�ribute. By doing so,
other applications need to declare a corresponding <uses-permission>
 (/guide/topics/manifest/uses-permission-element) element in their own manifest to be able to
sta�, stop, or bind to the service.

Note: If your app targets Android 5.0 (API level 21) or higher, use the **JobScheduler**
 (/reference/android/app/job/JobScheduler) to execute background services.

A service can protect individual IPC calls that are made into it with permissions. This is done
by calling checkCallingPermission()
 (/reference/android/content/Context#checkCallingPermission(java.lang.String)) before executing the
implementation of the call. We recommend using the declarative permissions in the
manifest, since those are less prone to oversight.

Caution: Don't confuse client and server permissions; ensure that the called app has
appropriate permissions and verify that you grant the same permissions to the calling app.

Binder and Messenger interfaces

Using Binder (/reference/android/os/Binder) or Messenger (/reference/android/os/Messenger) is the
preferred mechanism for RPC style IPC on Android. They provide well-de�ned inte�aces
that enable mutual authentication of the endpoints, if required.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 19/23

https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/guide/topics/manifest/service-element
https://developer.android.com/guide/topics/manifest/service-element
https://developer.android.com/guide/topics/manifest/service-element
https://developer.android.com/guide/topics/manifest/service-element
https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#exported
https://developer.android.com/guide/topics/manifest/service-element#prmsn
https://developer.android.com/guide/topics/manifest/service-element#prmsn
https://developer.android.com/guide/topics/manifest/service-element#prmsn
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/guide/topics/manifest/uses-permission-element
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Messenger
https://developer.android.com/reference/android/os/Messenger
https://developer.android.com/reference/android/os/Messenger

We recommend that you design your app inte�aces in a way that doesn't require inte�ace-
speci�c permission checks. Binder and Messenger objects aren't declared within the
application manifest, and therefore you can't apply declarative permissions directly to them.
They generally inherit permissions declared in the application manifest for the Service
 (/reference/android/app/Service) or Activity (/reference/android/app/Activity) within which they
are implemented. If you are creating an inte�ace that requires authentication and/or access
controls, you must explicitly add those controls as code in the Binder or Messenger
inte�ace.

If you are providing an inte�ace that does require access controls, use
checkCallingPermission()

 (/reference/android/content/Context#checkCallingPermission(java.lang.String)) to verify whether the
caller has a required permission. This is especially impo�ant before accessing a service on
behalf of the caller, as the identity of your application is passed to other inte�aces. If you
are invoking an inte�ace provided by a Service, the bindService()
 (/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceCo
nnection,%20int))
invocation can fail if you don't have permission to access the given service. If you need to
allow an external process to interact with your app but it doesn't have the necessary
permissions to do so, you can use the clearCallingIdentity()
 (/reference/android/os/Binder#clearCallingIdentity()) method. This method pe�orms the call to
your app's inte�ace as though your app were making the call itself, rather than the external
caller. You can restore the caller permissions later with the restoreCallingIdentity()
 (/reference/android/os/Binder#restoreCallingIdentity(long)) method.

For more information about pe�orming IPC with a service, see Bound Services
 (/guide/components/bound-services).

Broadcast receivers

A BroadcastReceiver (/reference/android/content/BroadcastReceiver) handles asynchronous
requests initiated by an Intent (/reference/android/content/Intent).

By default, receivers are expo�ed and can be invoked by any other application. If your
BroadcastReceiver is intended for use by other applications, you might want to apply
security permissions to receivers using the <receiver> (/guide/topics/manifest/receiver-element)
element within the application manifest. This prevents applications without appropriate
permissions from sending an intent to the BroadcastReceiver.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 20/23

https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/os/Binder#clearCallingIdentity()
https://developer.android.com/reference/android/os/Binder#clearCallingIdentity()
https://developer.android.com/reference/android/os/Binder#clearCallingIdentity()
https://developer.android.com/reference/android/os/Binder#clearCallingIdentity()
https://developer.android.com/reference/android/os/Binder#restoreCallingIdentity(long)
https://developer.android.com/reference/android/os/Binder#restoreCallingIdentity(long)
https://developer.android.com/reference/android/os/Binder#restoreCallingIdentity(long)
https://developer.android.com/reference/android/os/Binder#restoreCallingIdentity(long)
https://developer.android.com/guide/components/bound-services
https://developer.android.com/guide/components/bound-services
https://developer.android.com/guide/components/bound-services
https://developer.android.com/guide/components/bound-services
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/topics/manifest/receiver-element
https://developer.android.com/guide/topics/manifest/receiver-element
https://developer.android.com/guide/topics/manifest/receiver-element

Security with dynamically loaded code

We strongly discourage loading code from outside of your application APK. Doing so
signi�cantly increases the likelihood of application compromise due to code injection or
code tampering. It also adds complexity around version management and application testing
—and it can make it impossible to verify the behavior of an application, so it might be
prohibited in some environments.

If your application does dynamically load code, the most impo�ant thing to keep in mind is
that the dynamically loaded code runs with the same security permissions as the application
APK. The user makes a decision to install your application based on your identity, and the
user expects that you provide any code run within the application, including code that is
dynamically loaded.

Many applications a�empt to load code from insecure locations, such as downloaded from
the network over unencrypted protocols or from world-writable locations such as external
storage. These locations could let someone on the network modify the content in transit or
another application on a user's device to modify the content on the device. On the other
hand, modules included directly within your APK can't be modi�ed by other applications.
This is true whether the code is a native library or a class being loaded using
DexClassLoader (/reference/dalvik/system/DexClassLoader).

Security in a virtual machine

Dalvik is Android's runtime vi�ual machine (VM). Dalvik was built speci�cally for Android, but
many of the concerns regarding secure code in other vi�ual machines also apply to Android.
In general, you don't need to concern yourself with security issues relating to the vi�ual
machine. Your application runs in a secure sandbox environment, so other processes on the
system can't access your code or private data.

If you're interested in learning more about vi�ual machine security, familiarize yourself with
some existing literature on the subject. Two of the more popular resources are:

Securing Java (h�p://www.securingjava.com/toc.html)

Related 3rd pa�y Projects
 (h�ps://www.owasp.org/index.php/Category:Java#tab=Related_3rd_Pa�y_Projects)

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 21/23

https://developer.android.com/reference/dalvik/system/DexClassLoader
https://developer.android.com/reference/dalvik/system/DexClassLoader
https://developer.android.com/reference/dalvik/system/DexClassLoader
http://www.securingjava.com/toc.html
http://www.securingjava.com/toc.html
http://www.securingjava.com/toc.html
https://www.owasp.org/index.php/Category:Java#tab=Related_3rd_Party_Projects
https://www.owasp.org/index.php/Category:Java#tab=Related_3rd_Party_Projects
https://www.owasp.org/index.php/Category:Java#tab=Related_3rd_Party_Projects
https://www.owasp.org/index.php/Category:Java#tab=Related_3rd_Party_Projects

This document focuses on areas that are Android speci�c or di�erent from other VM
environments. For developers experienced with VM programming in other environments,
there are two broad issues that might be di�erent about writing apps for Android:

Some vi�ual machines, such as the JVM or .NET runtime, act as a security boundary,
isolating code from the underlying operating system capabilities. On Android, the
Dalvik VM is not a security boundary—the application sandbox is implemented at the
OS level, so Dalvik can interoperate with native code in the same application without
any security constraints.

Given the limited storage on mobile devices, it's common for developers to want to
build modular applications and use dynamic class loading. When doing this, consider
both the source where you retrieve your application logic and where you store it locally.
Don't use dynamic class loading from sources that aren't veri�ed, such as unsecured
network sources or external storage, because that code might be modi�ed to include
malicious behavior.

Security in native code

In general, we recommend using the Android SDK for application development, rather than
using native code with the Android NDK (/tools/sdk/ndk). Applications built with native code
are more complex, less po�able, and more likely to include common memory-corruption
errors such as bu�er ove�lows.

Android is built using the Linux kernel, and being familiar with Linux development security
best practices is especially useful if you are using native code. Linux security practices are
beyond the scope of this document, but one of the most popular resources is Secure
Programming HOWTO - Creating Secure So�ware (h�p://www.dwheeler.com/secure-programs).

An impo�ant di�erence between Android and most Linux environments is the application
sandbox. On Android, all applications run in the application sandbox, including those wri�en
with native code. A good way to think about it for developers familiar with Linux is to know
that every application is given a unique User Identi�er (UID) with very limited permissions.
This is discussed in more detail in the Android Security Overview
 (h�ps://source.android.com/tech/security/index.html), and you should be familiar with application
permissions even if you are using native code.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 22/23

https://developer.android.com/tools/sdk/ndk
https://developer.android.com/tools/sdk/ndk
https://developer.android.com/tools/sdk/ndk
http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs
http://www.dwheeler.com/secure-programs
https://source.android.com/tech/security/index.html
https://source.android.com/tech/security/index.html
https://source.android.com/tech/security/index.html
https://source.android.com/tech/security/index.html

Content and code samples on this page are subject to the licenses described in the Content License (/license).
Java and OpenJDK are trademarks or registered trademarks of Oracle and/or its a�liates.

Last updated 2024-02-26 UTC.

5/7/24, 10:29 AM Security guidelines | App quality | Android Developers

https://developer.android.com/privacy-and-security/security-tips 23/23

https://developer.android.com/license
https://developer.android.com/license
https://developer.android.com/license

